Directed evolution of the tryptophan synthase β-subunit for stand-alone function recapitulates allosteric activation.
نویسندگان
چکیده
Enzymes in heteromeric, allosterically regulated complexes catalyze a rich array of chemical reactions. Separating the subunits of such complexes, however, often severely attenuates their catalytic activities, because they can no longer be activated by their protein partners. We used directed evolution to explore allosteric regulation as a source of latent catalytic potential using the β-subunit of tryptophan synthase from Pyrococcus furiosus (PfTrpB). As part of its native αββα complex, TrpB efficiently produces tryptophan and tryptophan analogs; activity drops considerably when it is used as a stand-alone catalyst without the α-subunit. Kinetic, spectroscopic, and X-ray crystallographic data show that this lost activity can be recovered by mutations that reproduce the effects of complexation with the α-subunit. The engineered PfTrpB is a powerful platform for production of Trp analogs and for further directed evolution to expand substrate and reaction scope.
منابع مشابه
Directed Evolution of an Allosteric Tryptophan Synthase to Create a Platform for Synthesis of Noncanonical Amino Acids
Tryptophan and its derivatives are important natural products and have many biochemical and synthetic applications. However, the more elaborate these derivatives are, the more complex the synthesis becomes. In this chapter, we summarize the development of an engineered enzymatic platform for synthesis of diverse tryptophan analogs. This endeavor utilizes the tryptophan synthase (TrpS) enzyme, a...
متن کاملA Panel of TrpB Biocatalysts Derived from Tryptophan Synthase through the Transfer of Mutations that Mimic Allosteric Activation.
Naturally occurring enzyme homologues often display highly divergent activity with non-natural substrates. Exploiting this diversity with enzymes engineered for new or altered function, however, is laborious because the engineering must be replicated for each homologue. A small set of mutations of the tryptophan synthase β-subunit (TrpB) from Pyrococcus furiosus, which mimics the activation aff...
متن کاملSynthesis of β-Branched Tryptophan Analogues Using an Engineered Subunit of Tryptophan Synthase.
We report that l-threonine may substitute for l-serine in the β-substitution reaction of an engineered subunit of tryptophan synthase from Pyrococcus furiosus, yielding (2S,3S)-β-methyltryptophan (β-MeTrp) in a single step. The trace activity of the wild-type β-subunit on this substrate was enhanced more than 1000-fold by directed evolution. Structural and spectroscopic data indicate that this ...
متن کاملThe tryptophan synthase α2β2 complex: a model for substrate channeling, allosteric communication, and pyridoxal phosphate catalysis.
I reflect on my research on pyridoxal phosphate (PLP) enzymes over fifty-five years and on how I combined research with marriage and family. My Ph.D. research with Esmond E. Snell established one aspect of PLP enzyme mechanism. My postdoctoral work first with Hans L. Kornberg and then with Alton Meister characterized the structure and function of another PLP enzyme, l-aspartate β-decarboxylase....
متن کاملThermal repair of tryptophan synthase mutations in a regulatory intersubunit salt bridge. Evidence from arrhenius plots, absorption spectra, and primary kinetic isotope effects.
This work is aimed at understanding how protein structure and conformation regulate activity and allosteric communication in the tryptophan synthase alpha(2)beta(2) complex from Salmonella typhimurium. Previous crystallographic and kinetic results suggest that both monovalent cations and a salt bridge between alpha subunit Asp(56) and beta subunit Lys(167) play allosteric roles. Here we show th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 47 شماره
صفحات -
تاریخ انتشار 2015