Genetic dissection of basal defence responsiveness in accessions of Arabidopsis thaliana.

نویسندگان

  • Shakoor Ahmad
  • Marieke Van Hulten
  • Janet Martin
  • Corné M J Pieterse
  • Saskia C M Van Wees
  • Jurriaan Ton
چکیده

Basal resistance involves a multitude of pathogen- and herbivore-inducible defence mechanisms, ranging from localized callose deposition to systemic defence gene induction by salicylic acid (SA) and jasmonic acid (JA). In this study, we have explored and dissected genetic variation in the responsiveness of basal defence mechanisms within a selection of Arabidopsis accessions. Responsiveness of JA-induced PDF1.2 gene expression was associated with enhanced basal resistance against the necrotrophic fungus Plectosphaerella cucumerina and the herbivore Spodoptera littoralis. Conversely, accessions showing augmented PR-1 induction upon SA treatment were more resistant to the hemi-biotrophic pathogen Pseudomonas syringae, and constitutively expressed defence-related transcription factor (TF) genes. Unexpectedly, accessions with primed responsiveness to SA deposited comparatively little callose after treatment with microbe-associated molecular patterns. A quantitative trait locus (QTL) analysis identified two loci regulating flagellin-induced callose and one locus regulating SA-induced PR-1 expression. The latter QTL was found to contribute to basal resistance against P. syringae. None of the defence regulatory QTLs influenced plant growth, suggesting that the constitutive defence priming conferred by these loci is not associated with major costs on plant growth. Our study demonstrates that natural variation in basal resistance can be exploited to identify genetic loci that prime the plant's basal defence arsenal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis.

Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated the dissection of canonical eukaryotic defence pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will en...

متن کامل

Genetic variation for induced and basal resistance against leaf pathogen Pseudomonas syringae pv. tomato DC3000 among Arabidopsis thaliana accessions

In Arabidopsis thaliana, significant efforts to determine the effect of naturally occurring variation between phenotypically divergent accessions on different biotic or abiotic stresses are underway. Although it is usually assumed that induced systemic resistance (ISR) against pathogen will covary with plant genetic variation, this assumption has not been tested rigorously in previous experimen...

متن کامل

Natural variation in arabidopsis stomatal abundance

Our understanding of stomatal development in Arabidopsis thaliana is based on mutants with aberrant, often lethal phenotypes. Through a comprehensive analysis of stomatal abundance in wild A. thaliana accessions, Delgado et al. (pp. 1247–1258) determine relationships amongst stomata-related traits and uncover hidden genetic variation in stomata developmental pathways. The study identifies natur...

متن کامل

Differential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses

The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...

متن کامل

مشکلات روش‌های موجود و ارائه دو روش جدید کشت هیدروپونیک گیاه آرابیدوپسیس تالیانا

Arabidopsis thaliana is a suitable model plant for genetic and molecular biology studies in higher plants. However, its hydroponic culture for biochemical and physiological studies is a challenge due to small size, capillary roots and little biomass at maturity. Several cultural systems have been suggested for Arabidopsis thaliana hydroponic culture, each having special advantages and disadvant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant, cell & environment

دوره 34 7  شماره 

صفحات  -

تاریخ انتشار 2011