ADF/Cofilin Controls Synaptic Actin Dynamics and Regulates Synaptic Vesicle Mobilization and Exocytosis.

نویسندگان

  • Michael Wolf
  • Anika-Maria Zimmermann
  • Andreas Görlich
  • Christine B Gurniak
  • Marco Sassoè-Pognetto
  • Eckhard Friauf
  • Walter Witke
  • Marco B Rust
چکیده

Actin is a regulator of synaptic vesicle mobilization and exocytosis, but little is known about the mechanisms that regulate actin at presynaptic terminals. Genetic data on LIMK1, a negative regulator of actin-depolymerizing proteins of the ADF/cofilin family, suggest a role for ADF/cofilin in presynaptic function. However, synapse physiology is fully preserved upon genetic ablation of ADF in mice, and n-cofilin mutant mice display defects in postsynaptic plasticity, but not in presynaptic function. One explanation for this phenomenon is overlapping functions of ADF and n-cofilin in presynaptic physiology. Here, we tested this hypothesis and genetically removed ADF together with n-cofilin from synapses. In double mutants for ADF and n-cofilin, synaptic actin dynamics was impaired and more severely affected than in single mutants. The resulting cytoskeletal defects heavily affected the organization, mobilization, and exocytosis of synaptic vesicles in hippocampal CA3-CA1 synapses. Our data for the first time identify overlapping functions for ADF and n-cofilin in presynaptic physiology and vesicle trafficking. We conclude that n-cofilin is a limiting factor in postsynaptic plasticity, a function which cannot be substituted by ADF. On the presynaptic side, the presence of either ADF or n-cofilin is sufficient to control actin remodeling during vesicle release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N-Cofilin Can Compensate for the Loss of ADF in Excitatory Synapses

Actin plays important roles in a number of synaptic processes, including synaptic vesicle organization and exocytosis, mobility of postsynaptic receptors, and synaptic plasticity. However, little is known about the mechanisms that control actin at synapses. Actin dynamics crucially depend on LIM kinase 1 (LIMK1) that controls the activity of the actin depolymerizing proteins of the ADF/cofilin ...

متن کامل

Novel functions for ADF/cofilin in excitatory synapses - lessons from gene-targeted mice

Actin filaments (F-actin) are the major structural component of excitatory synapses. In excitatory synapses, F-actin is enriched in presynaptic terminals and in postsynaptic dendritic spines, and actin dynamics - the spatiotemporally controlled assembly and disassembly of F-actin - have been implicated in pre- and postsynaptic physiology, additionally to their function in synapse morphology. He...

متن کامل

Phosphorylation of cofilin regulates extinction of conditioned aversive memory via AMPAR trafficking.

Actin dynamics provide an important mechanism for the modification of synaptic plasticity, which is regulated by the actin depolymerizing factor (ADF)/cofilin. However, the role of cofilin regulated actin dynamics in memory extinction process is still unclear. Here, we observed that extinction of conditioned taste aversive (CTA) memory led to temporally enhanced ADF/cofilin activity in the infr...

متن کامل

Piccolo modulation of Synapsin1a dynamics regulates synaptic vesicle exocytosis

Active zones are specialized regions of the presynaptic plasma membrane designed for the efficient and repetitive release of neurotransmitter via synaptic vesicle (SV) exocytosis. Piccolo is a high molecular weight component of the active zone that is hypothesized to participate both in active zone formation and the scaffolding of key molecules involved in SV recycling. In this study, we use in...

متن کامل

Piccolo regulates the dynamic assembly of presynaptic F-actin.

Filamentous (F)-actin is a known regulator of the synaptic vesicle (SV) cycle, with roles in SV mobilization, fusion, and endocytosis. However, the molecular pathways that regulate its dynamic assembly within presynaptic boutons remain unclear. In this study, we have used shRNA-mediated knockdown to demonstrate that Piccolo, a multidomain protein of the active zone cytomatrix, is a key regulato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 25 9  شماره 

صفحات  -

تاریخ انتشار 2015