Low NAD(P)H:quinone oxidoreductase activity is associated with increased risk of leukemia with MLL translocations in infants and children.
نویسندگان
چکیده
An inactivating polymorphism at position 609 in the NAD(P)H:quinone oxidoreductase 1 gene (NQO1 C609T) is associated with an increased risk of adult leukemia. A small British study suggested that NQO1 C609T was associated with an increased risk of infant leukemias with MLL translocations, especially infant acute lymphoblastic leukemia (ALL) with t(4;11). We explored NQO1 C609T as a genetic risk factor in 39 pediatric de novo and 18 pediatric treatment-related leukemias with MLL translocations in the United States. Children with de novo B-lineage ALL without MLL translocations and a calculation of the expected genotype distribution in an ethnically matched population of disease-free subjects served as the comparison groups. Patients with de novo leukemias with MLL translocations were significantly more likely to be heterozygous at NQO1 C609T (odds ratio [OR] = 2.77, 95% confidence intervals [CI] 1.17-6.57; P =.02), and significantly more likely to have low/null NQO1 activity than patients with de novo B-lineage ALL without MLL translocations (OR = 2.47, 95% CI 1.08-5.68; P =.033). They were also significantly more likely to have low/null NQO1 activity than expected in an ethnically matched population of disease-free subjects (OR = 2.50, P =.02). Infants younger than 12 months old at diagnosis of leukemia with t(4;11) were most likely to have low/null NQO1 activity (OR > 10.0). Conversely, the distribution of NQO1 genotypes among patients with treatment-related leukemias with MLL translocations was not statistically different than in the comparison groups. The inactivating NQO1 polymorphism is associated with an increased risk of de novo leukemia with MLL translocations in infants and children.
منابع مشابه
The association of a distinctive allele of NAD(P)H:quinone oxidoreductase with pediatric acute lymphoblastic leukemias with MLL fusion genes in Japan.
BACKGROUND AND OBJECTIVES The enzyme NAD(P)H:quinone oxidoreductase (NQO1) detoxifies chemicals with quinone rings including benzene metabolites and flavonoids. Previous studies in Caucasian populations have provided evidence that a loss of function allele at nt 609 (C609T, Pro187Ser) is associated with increased risk of infant acute lymphoblastic leukemia (ALL) with MLL-AF4 fusion genes. DES...
متن کاملEvaluation of the risk of lung cancer associated with NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism in male current cigarette smokers from the Eastern India
NAD(P)H: quinone oxidoreductase 1 (NQO1) is an endogenous cellular defence mechanism against several carcinogenic quinones derived from cigarette smoke. NQO1 C609T polymorphism is a strong determinant of NQO1 structure and function. The people with mutant allele for this polymorphism has significantly reduced NQO1 activity. In this study, we tried to evaluate the risk of lung cancer as...
متن کاملLow NAD(P)H:quinone oxidoreductase 1 activity is associated with increased risk of acute leukemia in adults.
NAD(P)H:quinone oxidoreductase 1 (NQO1) is an enzyme that detoxifies quinones and reduces oxidative stress. A cysteine-to-threonine (C --> T) substitution polymorphism at nucleotide 609 of the NQO1 complementary DNA (NQO1 C609T) results in a lowering of NQO1 activity. Individuals homozygous for this mutation have no NQO1 activity, and heterozygotes have low to intermediate activity compared wit...
متن کاملHuman Genome Epidemiology (HuGE) Review NQO1 Polymorphisms and De Novo Childhood Leukemia: A HuGE Review and Meta-Analysis
Polymorphisms in NQO1, a gene coding for the phase II enzyme involved in the detoxification of quinone carcinogens, have been associated with childhood leukemia in some studies, although the observed direction and magnitude of effects have been inconsistent. Therefore, the authors systematically reviewed all published reports describing the effect of NQO1 in de novo childhood leukemia and condu...
متن کاملA Lack of a Functional NAD(P)H:Quinone Oxidoreductase Allele Is Selectively Associated with Pediatric Leukemias That Have MLL Fusions
Rearrangements and fusion of the MLL gene with various alternative partner genes occur in ;80% of infant leukemias and are acquired during fetal hemopoiesis in utero. Similar MLL gene recombinants also occur in topoisomerase II-inhibiting drug-induced leukemias. These data have led to the suggestion that some infant leukemia may arise via transplacental fetal exposures during pregnancy to subst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 100 13 شماره
صفحات -
تاریخ انتشار 2002