An Imperialist Competitive Algorithm Artificial Neural Network Method to Predict Oil Flow Rate of the Wells

نویسندگان

  • Shahram Mollaiy Berneti
  • Mehdi Shahbazian
چکیده

Flow rates of oil, gas and water are most important parameters of oil production that is detected by Multiphase Flow Meters (MFM). Conventional MFM collects data on long-term, because of the radioactive source is used for detection and in unmanned location used due to being away from wells. In this work, a new method based on feed-forward artificial neural network (ANN) and Imperialist Competitive Algorithm (ICA) have been proposed to predict of oil flow rate of the wells. The proposed algorithm combines the local searching ability of the gradient– based back-propagation (BP) strategy with the global searching ability of imperialist competitive algorithm. Imperialist Competitive Algorithm is used to decide the initial weights of the neural network. The ICA-ANN is applied to predict oil flow rate of the wells utilizing data set of 31 wells in one of the northern Persian Gulf oil fields of Iran. The performance of the ICA-ANN is compared with ANN and the results demonstrate the effectiveness of the ICA-ANN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying Flow Units Using an Artificial Neural Network Approach Optimized by the Imperialist Competitive Algorithm

The spatial distribution of petrophysical properties within the reservoirs is one of the most important factors in reservoir characterization. Flow units are the continuous body over a specific reservoir volume within which the geological and petrophysical properties are the same. Accordingly, an accurate prediction of flow units is a major task to achieve a reliable petrophysical description o...

متن کامل

Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir

Multiphase flow meters (MPFMs) are utilized to provide quick and accurate well test data in numerous numbers of oil production applications like those in remote or unmanned locations topside exploitations that minimize platform space and subsea applications. Flow rates of phases (oil, gas and water) are most important parameter which is detected by MPFMs. Conventional MPFM data collecting is do...

متن کامل

Predicting arsenic and heavy metals contamination in groundwater resources of Ghahavand plain based on an artificial neural network optimized by imperialist competitive algorithm

Background: The effects of trace elements on human health and the environment gives importance to the analysis of heavy metals contamination in environmental samples and, more particularly, human food sources. Therefore, the current study aimed to predict arsenic and heavy metals (Cu, Pb, and Zn) contamination in the groundwater resources of Ghahavand Plain based on an artificial neural network...

متن کامل

Prediction of Surface Roughness by Hybrid Artificial Neural Network and Evolutionary Algorithms in End Milling

Machining processes such as end milling are the main steps of production which have major effect on the quality and cost of products. Surface roughness is one of the considerable factors that production managers tend to implement in their decisions. In this study, an artificial neural network is proposed to minimize the surface roughness by tuning the conditions of machining process such as cut...

متن کامل

Application of artificial neural network and genetic algorithm to modelling the groundwater inflow to an advancing open pit mine

In this study, a hybrid intelligent model has been designed to predict groundwater inflow to a mine pit during its advance. Novel hybrid method coupling artificial neural network (ANN) with genetic algorithm (GA) called ANN-GA, was utilised. Ratios of pit depth to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the hydraulic head (HH) in the observation w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011