Clustering instability of the spatial distribution of inertial particles in turbulent flows.
نویسندگان
چکیده
A theory of clustering of inertial particles advected by a turbulent velocity field caused by an instability of their spatial distribution is suggested. The reason for the clustering instability is a combined effect of the particles inertia and a finite correlation time of the velocity field. The crucial parameter for the clustering instability is the size of the particles. The critical size is estimated for a strong clustering (with a finite fraction of particles in clusters) associated with the growth of the mean absolute value of the particles number density and for a weak clustering associated with the growth of the second and higher moments. A new concept of compressibility of the turbulent diffusion tensor caused by a finite correlation time of an incompressible velocity field is introduced. In this model of the velocity field, the field of Lagrangian trajectories is not divergence free. A mechanism of saturation of the clustering instability associated with the particles collisions in the clusters is suggested. Applications of the analyzed effects to the dynamics of droplets in the turbulent atmosphere are discussed. An estimated nonlinear level of the saturation of the droplets number density in clouds exceeds by the orders of magnitude their mean number density. The critical size of cloud droplets required for cluster formation is more than 20 microm.
منابع مشابه
Heavy Particle Clustering in Turbulent Flows
Distributions of heavy particles suspended in incompressible turbulent flows are investigated by means of high-resolution direct numerical simulations. It is shown that particles form fractal clusters in the dissipative range, with properties independent of the Reynolds number. Conversely, in the inertial range, the particle distribution is not scale-invariant. It is however shown that deviatio...
متن کاملOverview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows
An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...
متن کاملSpatial clustering of polydisperse inertial particles in turbulence: II. Comparing simulation with experiment
Particles that are heavy compared to the fluid in which they are embedded (inertial particles) tend to cluster in turbulent flow, with the degree of clustering depending on the particle Stokes number. The phenomenon is relevant to a variety of multiphase flows, including atmospheric clouds; in most realistic systems, particles have a continuous distribution of sizes and therefore the clustering...
متن کاملMechanisms of formation of aerosol and gaseous inhomogeneities in the turbulent atmosphere
Ž . Ž New mechanisms of formation of large-scale more than 100–200 m and small-scale about 1 . cm inhomogeneities in spatial distributions of aerosols, droplets and gaseous admixtures are discussed. The large-scale inhomogeneities are formed in the vicinity of the temperature inversion layers due to excitation of the large-scale instability. This effect is caused by additional nondiffusive turb...
متن کاملInertial clustering of particles in high-Reynolds-number turbulence.
We report experimental evidence of spatial clustering of dense particles in homogenous, isotropic turbulence at high Reynolds numbers. The dissipation-scale clustering becomes stronger as the Stokes number increases and is found to exhibit similarity with respect to the droplet Stokes number over a range of experimental conditions (particle diameter and turbulent energy dissipation rate). These...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 66 3 Pt 2B شماره
صفحات -
تاریخ انتشار 2002