In vitro fracture toughness of human dentin.

نویسندگان

  • V Imbeni
  • R K Nalla
  • C Bosi
  • J H Kinney
  • R O Ritchie
چکیده

The in vitro fracture toughness of human dentin has been reported to be of the order of 3 MPa (square root)m. This result, however, is based on a single study for a single orientation, and furthermore involves notched, rather than fatigue precracked, test samples. The present study seeks to obtain an improved, lower-bound, value of the toughness, and to show that previously reported values may be erroneously high because of the absence of a sharp crack as the stress concentrator. Specifically, the average measured critical stress intensity, K(c), for the onset of unstable fracture along an orientation perpendicular to the long axis of the tubules in dentin is found to be 1.8 MPa (square root)m in simulated body fluid (Hanks' balanced salt solution), when tested in a three-point bending specimen containing a (nominally) atomically sharp precrack generated during prior fatigue cycling. This is to be compared with a value of 2.7 MPa (square root)m measured under identical experimental conditions except that the bend specimen contained a sharp machined notch (of root radius 30-50 microm). The effect of acuity of the precrack on the fracture toughness of human dentin is discussed in the context of these data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms.

Toughening mechanisms based on the presence of collagen fibrils have long been proposed for mineralized biological tissues like bone and dentin; however, no direct evidence for their precise role has ever been provided. Furthermore, although the anisotropy of mechanical properties of dentin with respect to orientation has been suggested in the literature, accurate measurements to support the ef...

متن کامل

The importance of microstructural variations on the fracture toughness of human dentin.

The crack growth resistance of human dentin was characterized as a function of relative distance from the DEJ and the corresponding microstructure. Compact tension specimens were prepared from the coronal dentin of caries-free 3rd molars. The specimens were sectioned from either the outer, middle or inner dentin. Stable crack extension was achieved under Mode I quasi-static loading, with the cr...

متن کامل

Aging and Fracture of Human Cortical Bone and Tooth Dentin

Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms, which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms, which function pr...

متن کامل

Effect of Bleaching Agent on Interfacial Fracture Toughness of Resin Composite-dentin Interfaces

The effect of bleaching on fracture toughness (Kic) of existing composite-dentin interfaces was assessed using the notchless triangular prism (NTP) specimen fracture toughness test. Human molars and premolars (<6 months old) were wet ground on 600 SiC to obtain 4x4x4x4mm triangular prisms with buccal or lingual exposed for bonding. Buccal or lingual dentin surfaces, ground on 600 grit sandpaper...

متن کامل

Mechanistic aspects of fracture and R-curve behavior in human cortical bone.

An understanding of the evolution of toughness is essential for the mechanistic interpretation of the fracture of cortical bone. In the present study, in vitro fracture experiments were conducted on human cortical bone in order to identify and quantitatively assess the salient toughening mechanisms. The fracture toughness was found to rise linearly with crack extension (i.e., rising resistance-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 66 1  شماره 

صفحات  -

تاریخ انتشار 2003