Invariant Manifold Reduction and Bifurcation for Stochastic Partial Differential Equations
نویسنده
چکیده
Stochastic partial differential equations arise as mathematical models of complex multiscale systems under random influences. Invariant manifolds often provide geometric structure for understanding stochastic dynamics. In this paper, a random invariant manifold reduction principle is proved for a class of stochastic partial differential equations. The dynamical behavior is shown to be described by a stochastic ordinary differential equation on an invariant manifold, under suitable conditions. The change of dynamical structures for the stochastic partial differential equations is thus obtained by investigating the stochastic ordinary differential equation. The random cone invariant property is used in the approach. Moreover, the invariant manifold reduction principle is applied to detect bifurcation phenomena and stationary states in stochastic parabolic and hyperbolic partial differential equations.
منابع مشابه
Qualitative Properties of Local Random Invariant Manifolds for SPDEs with Quadratic Nonlinearity
The qualitative properties of local random invariant manifolds for stochastic partial differential equations with quadratic nonlinearities and multiplicative noise is studied by a cut off technique. By a detail estimates on the Perron fixed point equation describing the local random invariant manifold, the structure near a bifurcation is given.
متن کاملA Dynamical Approximation for Stochastic Partial Differential Equations
Random invariant manifolds often provide geometric structures for understanding stochastic dynamics. In this paper, a dynamical approximation estimate is derived for a class of stochastic partial differential equations, by showing that the random invariant manifold is almost surely asymptotically complete. The asymptotic dynamical behavior is thus described by a stochastic ordinary differential...
متن کاملSPATIOTEMPORAL DYNAMIC OF TOXIN PRODUCING PHYTOPLANKTON (TPP)-ZOOPLANKTON INTERACTION
The present paper deals with a toxin producing phytoplankton (TPP)-zooplankton interaction in spatial environment in thecontext of phytoplankton bloom. In the absence of diffusion the stability of the given system in terms of co-existence and hopf bifurcation has been discussed. After that TPP-zooplankton interaction is considered in spatiotemporal domain by assuming self diffusion in both popu...
متن کاملInvariant manifolds for random and stochastic partial differential equations
Random invariant manifolds are geometric objects useful for understanding complex dynamics under stochastic influences. Under a nonuniform hyperbolicity or a nonuniform exponential dichotomy condition, the existence of random pseudostable and pseudo-unstable manifolds for a class of random partial differential equations and stochastic partial differential equations is shown. Unlike the invarian...
متن کاملLecture Notes: Modulation- and Amplitude-Equations for stochastic partial differential equations
Modulationor Amplitude-Equations are a universal tool to approximate solutions of complicated systems given by partial or stochastic partial differential equations (SPDEs) near a change of stability, when there is no center manifold theory available. Relying on the natural separation of time-scales at the bifurcation the solution of the original equation is well approximated by the bifurcating ...
متن کامل