Statistical Modeling Of Effective Temperature With Cosmic Ray Flux
نویسندگان
چکیده
The increasing frequency of sporadic weather patterns in the last decade, especially major winter storms, demands improvements in current weather forecasting techniques. Recently, there are growing interests in stratospheric forecasting because of its potential enhancements of weather forecasts. The dominating factors of northern hemisphere wintertime variation of the general circulation in the stratosphere is a phenomenon called stratospheric sudden warming (SSW) events. It is shown in multiple studies that SSW and cosmic ray muon flux variations are strongly correlated with the effective atmospheric temperature changes, which suggests that cosmic ray detectors could be potentially used as meteorological applications, especially for monitoring SSW events. A method for determining the effective temperature with cosmic ray flux measurements is studied in this work by using statistical modeling techniques, such as k-fold cross validation and partial least square regression. This method requires the measurement of the vertical profile of the atmospheric temperature, typically measured by radiosonde, for training the model. In this study, cosmic ray flux measured in Atlanta and Yakutsk are chosen for demonstrating this novel technique. The results of this study show the possibility of realtime monitoring on effective temperature by simultaneous measurement of cosmic ray muon and neutron flux. This technique can also be used for studying the historical SSW events using the past world wide cosmic
منابع مشابه
Geomagnetic Field Eect over Azimuth Anisotropy of Cosmic Rays via Study of Primary Particles
Geomagnetic field is a one of the candidates for creation of anisotropy in azimuth distribution of extensive air showers over the entered cosmic rays to the atmosphere. Here we present the question: Is there any azimuth anisotropy flux in the upper level of the atmosphere due to the geomagnetic field over the entered cosmic-rays? The obtained answer is: yes. This investigation showed an agreeme...
متن کاملEvaluation of World Population-Weighted Effective Dose due to Cosmic Ray Exposure
After the release of the Report of the United Nations Scientific Committee of the Effects of Atomic Radiation in 2000 (UNSCEAR2000), it became commonly accepted that the world population-weighted effective dose due to cosmic-ray exposure is 0.38 mSv, with a range from 0.3 to 2 mSv. However, these values were derived from approximate projections of altitude and geographic dependences of the cosm...
متن کاملCorrelation Studies of Cosmic Ray Flux and Atmospheric and Space Weather
Since 1950’s there has been a growing interest of understanding the effects of cosmic ray radiation on the increase in average global temperature. Recent studies showed that galactic cosmic rays play a significant role in the formation of low cloud coverage and its consequent impact on the global temperature variation of the earth. A long-term measurement of the cosmic ray flux distribution at ...
متن کاملFlux of the cosmic X - ray backgound from HEAO 1 / A 2 experiment
We reanalyze data of HEAO1/A2 – Cosmic X-ray Experiment – in order to repeat the measurements of cosmic X-ray background (CXB) flux and accurately compare this value with other measurements of the CXB. We used the data of MED, HED1 and HED3 detectors in scan mode, that allowed us to measure effective solid angles and effective areas of detectors self consistently, in the same mode as the CXB fl...
متن کاملInfluence of Cosmic Rays on Earth’s Climate
During the last solar cycle Earth’s cloud cover underwent a modulation more closely in phase with the galactic cosmic ray flux than with other solar activity parameters. Further it is found that Earth’s temperature follows more closely decade variations in galactic cosmic ray flux and solar cycle length, than other solar activity parameters. The main conclusion is that the average state of the ...
متن کامل