Fully reliable error control for evolutionary problems

نویسندگان

  • Bärbel Holm
  • Svetlana Matculevich
چکیده

This work is focused on the application of functional-type a posteriori error estimates and corresponding indicators to a class of time-dependent problems. We consider the algorithmic part of their derivation and implementation and also discuss the numerical properties of these bounds that comply with obtained numerical results. This paper examines two different methods of approximate solution reconstruction for evolutionary models, i.e., a time-marching technique and a space-time approach. The first part of the study presents an algorithm for global minimisation of the majorant on each of discretisation time-cylinders (timeslabs), the effectiveness of this algorithm is confirmed by extensive numerical tests. In the second part of the publication, the application of functional error estimates is discussed with respect to a space-time approach. It is followed by a set of extensive numerical tests that demonstrates the efficiency of proposed error control method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Evolutionary Method for Improving the Reliability of Safetycritical Robots against Soft Errors

Nowadays, Robots account for most part of our lives in such a way that it is impossible for usto do many of affairs without them. Increasingly, the application of robots is developing fastand their functions become more sensitive and complex. One of the important requirements ofRobot use is a reliable software operation. For enhancement of reliability, it is a necessity todesign the fault toler...

متن کامل

Approximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms

In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced‎. ‎In this approach‎, ‎first a discretized form of the time-control space is considered and then‎, ‎a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...

متن کامل

A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...

متن کامل

Solving ‎‎‎Multi-objective Optimal Control Problems of chemical ‎processes ‎using ‎Hybrid ‎Evolutionary ‎Algorithm

Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier‎. ‎This paper applies an evolutionary optimization scheme‎, ‎inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...

متن کامل

Symmetric error estimates for discontinuous Galerkin time-stepping schemes for optimal control problems constrained to evolutionary Stokes equations

Abstract. We consider fully discrete finite element approximations of a distributed optimal control problem, constrained by the evolutionary Stokes equations. Conforming finite element methods for spatial discretization combined with discontinuous time-stepping Galerkin schemes are being used for the space-time discretization. Error estimates are proved under weak regularity hypotheses for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.08614  شماره 

صفحات  -

تاریخ انتشار 2017