DFUB 95/16 NEURAL 2.00 A Program for Neural Net and Statistical Pattern Recognition*
نویسنده
چکیده
A neural net program for pattern classification is presented, which includes: i) an improved version of Kohonen's Learning Vector Quantization (LVQ with Training Count); ii) Feed-Forward Neural Networks with Back-Propagation training; iii) Gaussian (or Mahalanobis distance) classification; iv) Fisher linear discrimination. Back-Prop trainings with emulations of Intel's ETANN and Siemens' MA16 neural chips are available as options. The program has been developed for High Energy Physics applications. * Program file available from WWW URL: http://www.bo.infn.it/preprint/odorico.html + E-mail: [email protected]
منابع مشابه
Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature
Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...
متن کاملDistribution Systems Reconfiguration Using Pattern Recognizer Neural Networks
A novel intelligent neural optimizer with two objective functions is designed for electrical distribution systems. The presented method is faster than alternative optimization methods and is comparable with the most powerful and precise ones. This optimizer is much smaller than similar neural systems. In this work, two intelligent estimators are designed, a load flow program is coded, and a spe...
متن کاملAN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION
A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...
متن کاملAn Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition
The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The...
متن کاملVector Quantizer Signal Transform
This paper deals with the problem of combination of Neural Networks (NN) and traditional statistical pattern classiiers. It is shown that a Neural Network can be used to replace the vector quantizer (VQ) and some feature extraction and feature reduction modules in a discrete pattern recognition system. A criterion for training the NN-weights and the classiier jointly is derived, leading to the ...
متن کامل