A natural variant of the heme-binding signature (R441C) resulting in complete loss of function of CYP2D6.
نویسندگان
چکیده
A new variant allele CYP2D6*62 (g.4044C>T; R441C) of the drug-metabolizing cytochrome P450 (P450) CYP2D6 was identified in a person with reduced sparteine oxidation phenotype, which was unexpected based on a genetic CYP2D6*1A/*41 background. The recombinantly expressed variant protein had no activity toward propafenone as a result of missing heme incorporation. Sequence alignment revealed that the positively charged R441 residue is part of the heme-binding signature but not strictly conserved among all the P450s. A compilation of described P450 monooxygenase variants revealed that other enzymes can functionally tolerate even nonconservative amino acid changes at the corresponding position (i.e., the invariant cysteine 2). This suggests that heme binding in mammalian P450s depends not only on the integrity of the heme-binding signature but also on other family- and subfamily-specific sequence determinants.
منابع مشابه
Short Communication A Natural Variant of the Heme-Binding Signature (R441C) Resulting in Complete Loss of Function of CYP2D6
A new variant allele CYP2D6*62 (g.4044C>T; R441C) of the drugmetabolizing cytochrome P450 (P450) CYP2D6 was identified in a person with reduced sparteine oxidation phenotype, which was unexpected based on a genetic CYP2D6*1A/*41 background. The recombinantly expressed variant protein had no activity toward propafenone as a result of missing heme incorporation. Sequence alignment revealed that t...
متن کاملShort Communication A Natural Variant of the Heme-Binding Signature (R441C) Resulting in Complete Loss of Function of CYP2D6
A new variant allele CYP2D6*62 (g.4044C>T; R441C) of the drugmetabolizing cytochrome P450 (P450) CYP2D6 was identified in a person with reduced sparteine oxidation phenotype, which was unexpected based on a genetic CYP2D6*1A/*41 background. The recombinantly expressed variant protein had no activity toward propafenone as a result of missing heme incorporation. Sequence alignment revealed that t...
متن کاملShort Communication A Natural Variant of the Heme-Binding Signature (R441C) Resulting in Complete Loss of Function of CYP2D6
A new variant allele CYP2D6*62 (g.4044C>T; R441C) of the drugmetabolizing cytochrome P450 (P450) CYP2D6 was identified in a person with reduced sparteine oxidation phenotype, which was unexpected based on a genetic CYP2D6*1A/*41 background. The recombinantly expressed variant protein had no activity toward propafenone as a result of missing heme incorporation. Sequence alignment revealed that t...
متن کاملThe non-functional polymorphism in CYP2D6 gene (CYP2D6*4): Report of frequency and assessment of CYP2D6*4 association with response to atorvastatin, in patients with high LDL level in North of Iran, Guilan Province
Background: Individuals respond to statins differently due to genetic variations. One of the most significant enzymes involved in drug metabolism is CYP2D6 enzyme, coded by the CYP2D6 gene. Individuals who carry two non-functional alleles in this gene are considered as poor metabolizers (PMs). Recognizing poor metabolizers might help in preventing adverse effects of drugs. Objective: In this ...
متن کاملComputational insights into fluconazole resistance by the suspected mutations in lanosterol 14α-demethylase (Erg11p) of Candida albicans
Mutations in the ergosterol biosynthesis gene 11 (ERG11) of Candida albicans have been frequently reported in fluconazole-resistant clinical isolates. Exploring the mutations and their effect could provide new insights into the underlying mechanism of fluconazole resistance. Erg11p_Threonine285Alanine (Erg11p_THR285ALA), Erg11p_Leucine321Phenylalanine (Erg11p_LEU321PHE) and Erg11p_Serine457Pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 35 8 شماره
صفحات -
تاریخ انتشار 2007