Solar Flare M-class Prediction Using Artificial Intelligence Techniques

نویسندگان

  • AZAM ZAVVARI
  • MOHAMMAD TARIQUL ISLAM
  • ZAMRI ZAINAL ABIDIN
چکیده

Currently, astronomical data have increased in terms of volume and complexity. To bring out the information in order to analyze and predict, the artificial intelligence techniques are required. This paper aims to apply artificial intelligence techniques to predict M-class solar flare. Artificial neural network, support vector machine and naïve bayes techniques are compared to define the best prediction performance accuracy technique. The dataset have been collected from daily data for 16 years, from 1998 to 2013. The attributes consist of solar flares data and sunspot number. The sunspots are a cooler spot on the surface of the sun, which have relation with solar flares. The Java-based machine learning WEKA is used for analysis and predicts solar flares. The best forecasted performance accuracy is achieved based on the artificial neural network method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارزیابی دقت روش‌های شبکه عصبی مصنوعی و عصبی- فازی در شبیه‌سازی تابش کل خورشیدی

Solar radiation is an important climate parameter which can affect hydrological and meteorological processes. This parameter is a key element in development of solar energy application studies. The purpose of this study is the assessment of artificial intelligence techniques in prediction of solar radiation (Rs) using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (AN...

متن کامل

Automatic Short-term Solar Flare Prediction Using Machine Learning and Sunspot Associations

In this paper, a machine learning-based system that could provide automated short-term solar flares prediction is presented. This system accepts two sets of inputs: McIntosh classification of sunspot groups and solar cycle data. In order to establish a correlation between solar flares and sunspot groups, the system explores the publicly available solar catalogues from the National Geophysical D...

متن کامل

Neural Network-based Prediction of Solar Activities

A data mining system designed to associate previous solar flares with sunspot groups using databases from Nobeyama Radioheliograph and the National Geophysical Data Center, and associated data used for training verification, and comparison of several Neural Networks topologies which can be used with an automated solar activity prediction system in the future. The data mining system manages to a...

متن کامل

Automated Prediction of Solar Flares Using Neural Networks and Sunspots Associations

An automated neural network-based system for predicting solar flares from their associated sunspots and simulated solar cycle is introduced. A sunspot is the cooler region of the Sun's photosphere which, thus, appears dark on the Sun's disc, and a solar flare is sudden, short lived, burst of energy on the Sun's surface, lasting from minutes to hours. The system explores the publicly available s...

متن کامل

Artificial Intelligence for prediction of porosity from Seismic Attributes: Case study in the Persian Gulf

Porosity is one of the key parameters associated with oil reservoirs. Determination of this petrophysical parameter is an essential step in reservoir characterization. Among different linear and nonlinear prediction tools such as multi-regression and polynomial curve fitting, artificial neural network has gained the attention of researchers over the past years. In the present study, two-dimensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015