Bankruptcy Prediction by Supervised Machine Learning Techniques : A Comparative Study
نویسندگان
چکیده
It is very important for financial institutions which are capable of accurately predicting business failure. In literature, numbers of bankruptcy prediction models have been developed based on statistical and machine learning techniques. In particular, many machine learning techniques, such as neural networks, decision trees, etc. have shown better prediction performances than statistical ones. However, advanced machine learning techniques, such as classifier ensembles and stacked generalization have not been fully examined and compared in terms of their bankruptcy prediction performances. The aim of this chapter is to compare two different machine learning techniques, one statistical approach, two types of classifier ensembles, and three stacked generalization classifiers over three related datasets. The experimental results show that classifier ensembles by weighted voting perform the best in term of predication accuracy. On the other hand, for Type II errors on average stacked generalization and single classifiers perform better than classifier ensembles. Chih-Fong Tsai National Central University, Taiwan Yu-Hsin Lu National Chung Cheng University, Taiwan Yu-Feng Hsu National Sun Yat-Sen University, Taiwan Bankruptcy Prediction by Supervised Machine Learning Techniques: A Comparative Study DOI: 10.4018/978-1-60960-818-7.ch3.19
منابع مشابه
A Predictive System for detection of Bankruptcy using Machine Learning techniques
Bankruptcy is a legal procedure that claims a person or organization as a debtor. It is essential to ascertain the risk of bankruptcy at initial stages to prevent financial losses. In this perspective, different soft computing techniques can be employed to ascertain bankruptcy. This study proposes a bankruptcy prediction system to categorize the companies based on extent of risk. The prediction...
متن کاملFinancial Application of Multi-Instance Learning: Two Greek Case Studies
The problems of bankruptcy prediction and fraud detection have been extensively considered in the financial literature. The objective of this work is twofold. Firstly, we investigate the efficiency of multi-instance learning in bankruptcy prediction. For this reason, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 150 ...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملBusiness Failure Prediction with Support Vector Machines and Neural Networks: a Comparative Study
Bankruptcy prediction has attracted a lot of research interests in previous literature, and recent studies have shown that artificial neural networks (ANN) method achieved better performance than traditional statistical ones. ANN approaches have, however, suffered from difficulties with generalization, producing models that can overfit the data. This paper employs a relatively new machine learn...
متن کاملA comparative study of classifier ensembles for bankruptcy prediction
The aim of bankruptcy prediction in the areas of data mining and machine learning is to develop an effective model which can provide the higher prediction accuracy. In the prior literature, various classification techniques have been developed and studied, in/with which classifier ensembles by combining multiple classifiers approach have shown their outperformance over many single classifiers. ...
متن کامل