Opposite effects of non-thermal plasma on cell migration and collagen production in keloid and normal fibroblasts

نویسندگان

  • Sung Un Kang
  • Yeon Soo Kim
  • Yang Eun Kim
  • Ju-Kyeong Park
  • Yun Sang Lee
  • Hee Young Kang
  • Jae Won Jang
  • Jeong Beom Ryeo
  • Yuijina Lee
  • Yoo Seob Shin
  • Chul-Ho Kim
چکیده

Recent progress in the understanding non-thermal plasma (NTP) properties prompted its application in the treatment of various diseases. However, therapeutic effect of NTP on keloid cells has not been reported previously. We sought to investigate the effect of NTP treatment on keloid by comparing cell migration and collagen production of keloid (KFs) and normal fibroblasts (NFs) and determined the regulatory pathways involved. We assessed NTP effects on cell migration in KFs and NFs by the wound healing assay and measured the expression of the epidermal growth factor receptor (EGFR), signal transducer and activator of transcription-3 (STAT3), and collagen by western blot. Expression of the transforming growth factor-β and Type I collagen following NTP treatment was determined by reverse transcription-polymerase chain reaction, immunofluorescence staining, and the Sircol collagen assay. NTP treatment increased cell migration and collagen production of NFs. However, it reduced these parameters in KFs. NTP reduced the expression of EGFR, STAT3, and Type I collagen in KFs but increased their levels in NFs. We revealed that NTP suppressed KF cell migration via down-regulation of EGFR and STAT3 and reduced collagen production via supressing transforming growth factor-β. Our data suggest that NTP may be a new therapeutic strategy for keloids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Human Adult Peripheral and Umbilical Cord Blood Platelet-Rich Plasma on Proliferation and Migration of Human Skin Fibroblasts

BACKGROUND Wound healing is a complex and dynamic process following damage in tissue structures. Due to extensive skin damage caused by burn injuries, this study determined the role of human adult peripheral and umbilical cord blood platelet-rich plasma on proliferation and migration in human skin fibroblasts. METHODS Platelet-rich plasma (5, 10, 15, 20 and 50% PRP) from human umbilica...

متن کامل

Fibroblasts cocultured with keloid keratinocytes: normal fibroblasts secrete collagen in a keloidlike manner.

Keloid scars represent a pathological response to cutaneous injury, reflecting a new set point between synthesis and degradation biased toward extracellular matrix (ECM) collagen accumulation. Using a serum-free two-chamber coculture model, we recently demonstrated a significant increase in normal fibroblast proliferation when cocultured with keloid-derived keratinocytes. We hypothesized that s...

متن کامل

The Preliminary Study of Effects of Tolfenamic Acid on Cell Proliferation, Cell Apoptosis, and Intracellular Collagen Deposition in Keloid Fibroblasts In Vitro

Keloid scarring is a fibroproliferative disorder due to the accumulation of collagen type I. Tolfenamic acid (TA), a nonsteroidal anti-inflammatory drug, has been found to potentially affect the synthesis of collagen in rats. In this preliminary study, we aimed to test the effects of TA on cell proliferation, cell apoptosis, and the deposition of intracellular collagen in keloid fibroblasts. No...

متن کامل

Human mesenchymal stem cells may be involved in keloid pathogenesis.

BACKGROUND The pathogenesis of keloid is poorly understood. Although vigorous investigations have attempted to elucidate the mechanisms or causative factors of keloid, there are little data on why keloids are very intractable and recur easily in each patient. METHODS In an attempt to analyze the possible interaction between human mesenchymal stem cells and keloid-derived fibroblasts, the dual...

متن کامل

DHMEQ, a novel NF-kappaB inhibitor, suppresses growth and type I collagen accumulation in keloid fibroblasts.

BACKGROUND Keloid is a benign dermal tumor characterized by proliferation of dermal fibroblasts and overproduction of extracellular matrix (ECM). Nuclear factor kappaB (NF-kappaB) plays an important role in regulation of inflammation, immune response and cell proliferation. Activation of the NF-kappaB pathway is thought to be closely linked to abnormal cell proliferation and ECM production in k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017