Metabolism and longevity: is there a role for membrane fatty acids?
نویسنده
چکیده
More than 100 years ago, Max Rubner combined the fact that both metabolic rate and longevity of mammals varies with body size to calculate that "life energy potential" (lifetime energy turnover per kilogram) was relatively constant. This calculation linked longevity to aerobic metabolism which in turn led to the "rate-of-living" and ultimately the "oxidative stress" theories of aging. However, the link between metabolic rate and longevity is imperfect. Although unknown in Rubner's time, one aspect of body composition of mammals also varies with body size, namely the fatty acid composition of membranes. Fatty acids vary dramatically in their susceptibility to peroxidation and the products of lipid peroxidation are very powerful reactive molecules that damage other cellular molecules. The "membrane pacemaker" modification of the "oxidative stress" theory of aging proposes that fatty acid composition of membranes, via its influence on peroxidation of lipids, is an important determinant of lifespan (and a link between metabolism and longevity). The relationship between membrane fatty acid composition and longevity is discussed for (1) mammals of different body size, (2) birds of different body size, (3) mammals and birds that are exceptionally long-living for their size, (4) strains of mice that vary in longevity, (5) calorie-restriction extension of longevity in rodents, (6) differences in longevity between queen and worker honeybees, and (7) variation in longevity among humans. Most of these comparisons support an important role for membrane fatty acid composition in the determination of longevity. It is apparent that membrane composition is regulated for each species. Provided the diet is not deficient in polyunsaturated fat, it has minimal influence on a species' membrane fatty acid composition and likely also on it's maximum longevity. The exceptional longevity of Homo sapiens combined with the limited knowledge of the fatty acid composition of human tissues support the potential importance of mitochondrial membranes in determination of longevity.
منابع مشابه
SYMPOSIUM Metabolism and longevity: Is there a role for membrane fatty acids?
Synopsis More than 100 years ago, Max Rubner combined the fact that both metabolic rate and longevity of mammals varies with body size to calculate that ‘‘life energy potential’’ (lifetime energy turnover per kilogram) was relatively constant. This calculation linked longevity to aerobic metabolism which in turn led to the ‘‘rate-of-living’’ and ultimately the ‘‘oxidative stress’’ theories of a...
متن کاملP28: The Effects of Omega-3 and 6 Fatty Acids on Hippocampus and Learning
One of the most nervous system evolution are memory and learning in humans. Learning is a skill that enhances synaptic activity in the hippocampus of prefrontal cortex. In fact, basic passive learning is communication between the conditioned and Unconditioned stimulation. Passive learning involves three steps: habit, education and remember. According to the results of investigations, the hippoc...
متن کاملMetabolic Effects of Polyunsaturated Fatty Acids in Chickens: A Review
Chicken has been used as a suitable model for lipid metabolism studies, because dietary modifications especially dietary fat type can change chicken body composition. Fats act as a condense source of energy and certain fatty acids such as polyunsaturated fatty acids (PUFAs) are required for both animal and human health. The n-3 PUFAs, especially, eicosapentaenoic acid (EPA) and docosahexaenoic ...
متن کاملI-7: Fatty Acids and Male Reproductive Function
Background Background: The fatty acid composition of the sperm membrane changes drastically during spermatogenesis and may be key to its function. Previous data has shown that intake of long chain poly-unsaturated fatty acids can change the fatty acid composition of tissues, including testes and sperm. However, whether these changes in composition translate into changes in semen quality or male...
متن کاملI-9: Sperm Trans Fatty Acids: An Undertreated Issue in Men Infertility
Background: Mammalian spermatozoa are characterized by a high proportion of polyunsaturated fatty acids (PUFA) and the membrane structure of spermatozoa plays a crucial role in fertilization. Moreover, dietary fatty acid (FA) influence sperm FA profiles in several species. This study focused on responses to dietary omega-3 fatty acids and comprehensive fatty acid profiles analysis in men as wel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integrative and comparative biology
دوره 50 5 شماره
صفحات -
تاریخ انتشار 2010