Basolateral amygdala lesions abolish mutual reward preferences in rats.

نویسندگان

  • Julen Hernandez-Lallement
  • Marijn van Wingerden
  • Sandra Schäble
  • Tobias Kalenscher
چکیده

In a recent study, we demonstrated that rats prefer mutual rewards in a Prosocial Choice Task. Here, employing the same task, we show that the integrity of basolateral amygdala was necessary for the expression of mutual reward preferences. Actor rats received bilateral excitotoxic (n=12) or sham lesions (n=10) targeting the basolateral amygdala and were subsequently tested in a Prosocial Choice Task where they could decide between rewarding ("Both Reward") or not rewarding a partner rat ("Own Reward"), either choice yielding identical reward to the actors themselves. To manipulate the social context and control for secondary reinforcement sources, actor rats were paired with either a partner rat (partner condition) or with an inanimate rat toy (toy condition). Sham-operated animals revealed a significant preference for the Both-Reward-option in the partner condition, but not in the toy condition. Amygdala-lesioned animals exhibited significantly lower Both-Reward preferences than the sham group in the partner but not in the toy condition, suggesting that basolateral amygdala was required for the expression of mutual reward preferences. Critically, in a reward magnitude discrimination task in the same experimental setup, both sham-operated and amygdala-lesioned animals preferred large over small rewards, suggesting that amygdala lesion effects were restricted to decision making in social contexts, leaving self-oriented behavior unaffected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered food preferences after lesions in the basolateral region of the amygdala in the rat.

Rats with lesions in the basolateral amygdala chose different foods from control rats in 10-min. food-preference tests. The normal rats ate primarily familiar chow, while the amygdala-lesioned rats ate primarily novel foods. The lesioned rats did not select indiscriminately but showed definite preferences. With repeated testing, the normal rats' preferences became similar to those of the amygda...

متن کامل

Lesions of the basolateral amygdala disrupt selective aspects of reinforcer representation in rats.

The amygdala is known to play a role in learning about motivationally significant events. We investigated this role further by examining the effects of excitotoxic lesions of the basolateral amygdala on the ability of rats to use instrumental outcomes to direct responding (the differential outcomes effect) and on the ability of Pavlovian cues to modulate instrumental performance based on shared...

متن کامل

Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice.

The orbitofrontal cortex (OFC) and basolateral nucleus of the amygdala (BLA) share many reciprocal connections, and a functional interaction between these regions is important in controlling goal-directed behavior. However, their relative roles have proved hard to dissociate. Although injury to these brain regions can cause similar effects, it has been suggested that the resulting impairments a...

متن کامل

Basolateral amygdala lesions facilitate reward choices after negative feedback in rats.

The orbitofrontal cortex (OFC) and basolateral amygdala (BLA) constitute part of a neural circuit important for adaptive, goal-directed learning. One task measuring flexibility of response to changes in reward is discrimination reversal learning. Damage to OFC produces well documented impairments on various forms of reversal learning in rodents, monkeys, and humans. Recent reports show that BLA...

متن کامل

Basolateral Amygdala Lesions Abolish Orbitofrontal-Dependent Reversal Impairments

Damage to orbitofrontal cortex (OFC) has long been associated with deficits in reversal learning. OFC damage also causes inflexible associative encoding in basolateral amygdala (ABL) during reversal learning. Here we provide a critical test of the hypothesis that the reversal deficit in OFC-lesioned rats is caused by this inflexible encoding in ABL. Rats with bilateral neurotoxic lesions of OFC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurobiology of learning and memory

دوره 127  شماره 

صفحات  -

تاریخ انتشار 2016