Empirical Bayes approach to block wavelet function estimation
نویسندگان
چکیده
Wavelet methods have demonstrated considerable success in function estimation through term-by-term thresholding of the empirical wavelet coefficients. However, it has been shown that grouping the empirical wavelet coefficients into blocks and making simultaneous threshold decisions about all the coefficients in each block has a number of advantages over term-by-term wavelet thresholding, including asymptotic optimality and better mean squared error performance in finite sample situations. An empirical Bayes approach to incorporating information on neighbouring empirical wavelet coefficients into function estimation that results in block wavelet shrinkage and block wavelet thresholding estimators is considered. Simulated examples are used to illustrate the performance of the resulting estimators, and to compare these estimators with several existing non-Bayesian block wavelet thresholding estimators. It is observed that the proposed empirical Bayes block wavelet shrinkage and block wavelet thresholding estimators outperform the non-Bayesian block wavelet thresholding estimators in finite sample situations. An application to a data set that was collected in an anaesthesiological study is also presented.
منابع مشابه
Parametric Empirical Bayes Test and Its Application to Selection of Wavelet Threshold
In this article, we propose a new method for selecting level dependent threshold in wavelet shrinkage using the empirical Bayes framework. We employ both Bayesian and frequentist testing hypothesis instead of point estimation method. The best test yields the best prior and hence the more appropriate wavelet thresholds. The standard model functions are used to illustrate the performance of the p...
متن کاملA penalised data-driven block shrinkage approach to empirical Bayes wavelet estimation
In this paper we propose a simple Bayesian block wavelet shrinkage method for estimating an unknown function in the presence of Gaussian noise. A data–driven procedure which can adaptively choose the block size and the shrinkage level at each resolution level is provided. The asymptotic property of the proposed method, BBN (Bayesian BlockNorm shrinkage), is investigated in the Besov sequence sp...
متن کاملWavelet-based image estimation: an empirical Bayes approach using Jeffrey's noninformative prior
The sparseness and decorrelation properties of the discrete wavelet transform have been exploited to develop powerful denoising methods. However, most of these methods have free parameters which have to be adjusted or estimated. In this paper, we propose a wavelet-based denoising technique without any free parameters; it is, in this sense, a "universal" method. Our approach uses empirical Bayes...
متن کاملWavelet Bayesian Block Shrinkage via Mixtures of Normal-Inverse Gamma Priors
In this paper we propose a block shrinkage method in the wavelet domain for estimating an unknown function in the presence of Gaussian noise. This shrinkage utilizes an empirical Bayes, block-adaptive approach that accounts for the sparseness of the representation of the unknown function. The modeling is accomplished by using a mixture of two normal-inverse gamma distributions as a joint prior ...
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کامل