Semi-supervised and Active Training of Conditional Random Fields for Activity Recognition
نویسنده
چکیده
Automated human activity recognition has attracted increasing attention in the past decade. However, the application of machine learning and probabilistic methods for activity recognition problems has been studied only in the past couple of years. For the first time, this thesis explores the application of semi-supervised and active learning in activity recognition. We present a new and efficient semi-supervised training method for parameter estimation and feature selection in conditional random fields (CRFs), a probabilistic graphical model. In real-world applications such as activity recognition, unlabeled sensor traces are relatively easy to obtain whereas labeled examples are expensive and tedious to collect. Furthermore, the ability to automatically select a small subset of discriminatory features from a large pool can be advantageous in terms of computational speed as well as accuracy. We introduce the semi-supervised virtual evidence boosting (sVEB) algorithm for training CRFs – a semi-supervised extension to the recently developed virtual evidence boosting (VEB) method for feature selection and parameter learning. sVEB takes advantage of the unlabeled data via minimum entropy regularization. The objective function combines the unlabeled conditional entropy with labeled conditional pseudo-likelihood. The sVEB algorithm reduces the overall system cost as well as the human labeling cost required during training, which are both important considerations in building real world inference systems. Moreover, we propose an active learning algorithm for training CRFs is based on virtual evidence boosting and uses entropy measures. Active virtual evidence boosting (aVEB) queries the user for most informative examples, efficiently builds up labeled training examples and incorporates unlabeled data as in sVEB. aVEB not only reduces computational complexity of training CRFs as in sVEB, but also outputs more accurate classification results for the same fraction of labeled data. In a set of experiments we illustrate that our algorithms, sVEB and aVEB, benefit from both the use of unlabeled data and automatic feature selection, and outperform other semi-supervised and active training approaches. The proposed methods could also be extended and employed for other classification problems in relational data.
منابع مشابه
Fast and Scalable Training of Semi-Supervised CRFs with Application to Activity Recognition
We present a new and efficient semi-supervised training method for parameter estimation and feature selection in conditional random fields (CRFs). In real-world applications such as activity recognition, unlabeled sensor traces are relatively easy to obtain whereas labeled examples are expensive and tedious to collect. Furthermore, the ability to automatically select a small subset of discrimin...
متن کاملRecognizing Named Entities in Tweets
The challenges of Named Entities Recognition (NER) for tweets lie in the insufficient information in a tweet and the unavailability of training data. We propose to combine a K-Nearest Neighbors (KNN) classifier with a linear Conditional Random Fields (CRF) model under a semi-supervised learning framework to tackle these challenges. The KNN based classifier conducts pre-labeling to collect globa...
متن کاملA Simple Semi-supervised Algorithm For Named Entity Recognition
We present a simple semi-supervised learning algorithm for named entity recognition (NER) using conditional random fields (CRFs). The algorithm is based on exploiting evidence that is independent from the features used for a classifier, which provides high-precision labels to unlabeled data. Such independent evidence is used to automatically extract highaccuracy and non-redundant data, leading ...
متن کاملGeneralized Expectation Criteria for Semi-Supervised Learning of Conditional Random Fields
This paper presents a semi-supervised training method for linear-chain conditional random fields that makes use of labeled features rather than labeled instances. This is accomplished by using generalized expectation criteria to express a preference for parameter settings in which the model’s distribution on unlabeled data matches a target distribution. We induce target conditional probability ...
متن کاملEfficient Graph-Based Semi-Supervised Learning of Structured Tagging Models
We describe a new scalable algorithm for semi-supervised training of conditional random fields (CRF) and its application to partof-speech (POS) tagging. The algorithm uses a similarity graph to encourage similar ngrams to have similar POS tags. We demonstrate the efficacy of our approach on a domain adaptation task, where we assume that we have access to large amounts of unlabeled data from the...
متن کامل