Incorporation of T and B epitopes of the circumsporozoite protein in a chemically defined synthetic vaccine against malaria
نویسندگان
چکیده
We show here an effective and novel approach to engineer peptide-based vaccines using a chemically defined system, known as multiple peptide antigen systems (MAPs), to protect an inbred mouse strain from infection against rodent malaria. 10 mono- and di-epitope MAP models containing different arrangements and stoichiometry of functional B and/or T helper cell epitopes from the circumsporozoite protein of Plasmodium berghei were used to immunize A/J mice. While these mice did not respond to the mono-epitope MAP bearing only the B or T epitope, very high titers of antibody and protective immunity against sporozoite challenge were elicited by di-epitope MAPs, particularly those with the B and T epitopes in tandem and present in equimolar amounts. These results, obtained in a well-defined rodent malaria model, indicate that MAPs may overcome some of the difficulties in the development of synthetic vaccines, not only for malaria but also for other infectious diseases.
منابع مشابه
Human CD4+ T cells induced by synthetic peptide malaria vaccine are comparable to cells elicited by attenuated Plasmodium falciparum sporozoites.
Peptide vaccines containing minimal epitopes of protective Ags provide the advantages of low cost, safety, and stability while focusing host responses on relevant targets of protective immunity. However, the limited complexity of malaria peptide vaccines raises questions regarding their equivalence to immune responses elicited by the irradiated sporozoite vaccine, the "gold standard" for protec...
متن کاملA hybrid multistage protein vaccine induces protective immunity against murine malaria.
We have previously reported the design and expression of chimeric recombinant proteins as an effective platform to deliver malaria vaccines. The erythrocytic and exoerythrocytic protein chimeras described included autologous T helper epitopes genetically linked to defined B cell epitopes. Proof-of-principle studies using vaccine constructs based on the Plasmodium yoelii circumsporozoite protein...
متن کاملProtection against malaria by immunization with plasmid DNA encoding circumsporozoite protein.
Immunization with irradiated sporozoites protects animals and humans against malaria, and the circumsporozoite protein is a target of this protective immunity. We now report that adjuvant-free intramuscular injection of mice with plasmid DNA encoding the Plasmodium yoelii circumsporozoite protein induced higher levels of antibodies and cytotoxic T lymphocytes against the P. yoelii circumsporozo...
متن کاملDesign of a Multi-epitope Peptide Vaccine against SARS-CoV-2 based on Immunoinformatics Data
Background and purpose: In 2019, the world has witnessed the emergence of a virus that caused acute respiratory distress syndrome in human with high mortality rates (approximately 3.7%). So far, no effective treatment has been proven against COVID-19. This study aimed at designing a multi-epitope vaccine combining several T-cell and B-cell epitopes of the SARS-CoV-2. Materials and methods: Bas...
متن کاملIncorporation of T-cell epitopes from tetanus and diphtheria toxoids into in-silico-designed hypoallergenic vaccine may enhance the protective immune response against allergens
Objective(s): New generation of allergy vaccines is capable of promoting the development of protective IgG and blocking the functionality of allergen-specific IgE. We incorporated universal and powerful T-cell epitopes from tetanus and diphtheria toxoids (TD epitope) into recombinant Che a 2, the well-known allergic profilin of Chenopodium album, to determine its immun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 171 شماره
صفحات -
تاریخ انتشار 1990