Probing Cu(I) in homogeneous catalysis using high-energy-resolution fluorescence-detected X-ray absorption spectroscopy.
نویسندگان
چکیده
Metal-to-ligand charge transfer excitations in Cu(I) X-ray absorption spectra are introduced as spectroscopic handles for the characterization of species in homogeneous catalytic reaction mixtures. Analysis is supported by correlation of a spectral library to calculations and to complementary spectroscopic parameters.
منابع مشابه
Catalysis seen in action.
Synchrotron radiation techniques are widely applied in materials research and heterogeneous catalysis. In homogeneous catalysis, its use so far is rather limited despite its high potential. Here, insights in the strengths and limitations of X-ray spectroscopy technique in the field of homogeneous catalysis are given, including new technique developments. A relevant homogeneous catalyst, used in...
متن کاملSynthesize and Optical properties of ZnO: Eu Microspheres Based Nano-sheets at Direct and Indirect Excitation
Europium (Eu) doped ZnO microsphere based nano-sheets were synthesized through hydrothermal method. Effects of different concentrations of Europium on structural and optical properties of ZnO nano-sheets were investigated in detail. Prepared un-doped and Eu-doped ZnO samples were characterized using X-Ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron micro...
متن کاملSuperconducting high-resolution X-ray detectors for metalloprotein L-edge spectroscopy
Superconducting tunnel junctions (STJs) can be used as high-resolution energy-dispersive X-ray detectors. STJ detectors are based on the measurement of an increased tunneling current from excess charge carriers that are excited above the superconducting energy gap by the absorption of an X-ray. Nb-based STJ detectors have a theoretical energy resolution limit below 5 eV FWHM for X-ray energies ...
متن کاملAging results in copper accumulations in glial fibrillary acidic protein-positive cells in the subventricular zone.
Analysis of rodent brains with X-ray fluorescence (XRF) microscopy combined with immunohistochemistry allowed us to demonstrate that local Cu concentrations are thousands of times higher in the glia of the subventricular zone (SVZ) than in other cells. Using XRF microscopy with subcellular resolution and intracellular X-ray absorption spectroscopy we determined the copper (I) oxidation state an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 51 48 شماره
صفحات -
تاریخ انتشار 2015