Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles

نویسندگان

  • Emanuele Zonaro
  • Elena Piacenza
  • Alessandro Presentato
  • Francesca Monti
  • Rossana Dell’Anna
  • Silvia Lampis
  • Giovanni Vallini
چکیده

BACKGROUND Bacteria have developed different mechanisms for the transformation of metalloid oxyanions to non-toxic chemical forms. A number of bacterial isolates so far obtained in axenic culture has shown the ability to bioreduce selenite and tellurite to the elemental state in different conditions along with the formation of nanoparticles-both inside and outside the cells-characterized by a variety of morphological features. This reductive process can be considered of major importance for two reasons: firstly, toxic and soluble (i.e. bioavailable) compounds such as selenite and tellurite are converted to a less toxic chemical forms (i.e. zero valent state); secondly, chalcogen nanoparticles have attracted great interest due to their photoelectric and semiconducting properties. In addition, their exploitation as antimicrobial agents is currently becoming an area of intensive research in medical sciences. RESULTS In the present study, the bacterial strain Ochrobactrum sp. MPV1, isolated from a dump of roasted arsenopyrites as residues of a formerly sulfuric acid production near Scarlino (Tuscany, Italy) was analyzed for its capability of efficaciously bioreducing the chalcogen oxyanions selenite (SeO32-) and tellurite (TeO32-) to their respective elemental forms (Se0 and Te0) in aerobic conditions, with generation of Se- and Te-nanoparticles (Se- and TeNPs). The isolate could bioconvert 2 mM SeO32- and 0.5 mM TeO32- to the corresponding Se0 and Te0 in 48 and 120 h, respectively. The intracellular accumulation of nanomaterials was demonstrated through electron microscopy. Moreover, several analyses were performed to shed light on the mechanisms involved in SeO32- and TeO32- bioreduction to their elemental states. Results obtained suggested that these oxyanions are bioconverted through two different mechanisms in Ochrobactrum sp. MPV1. Glutathione (GSH) seemed to play a key role in SeO32- bioreduction, while TeO32- bioconversion could be ascribed to the catalytic activity of intracellular NADH-dependent oxidoreductases. The organic coating surrounding biogenic Se- and TeNPs was also characterized through Fourier-transform infrared spectroscopy. This analysis revealed interesting differences among the NPs produced by Ochrobactrum sp. MPV1 and suggested a possible different role of phospholipids and proteins in both biosynthesis and stabilization of such chalcogen-NPs. CONCLUSIONS In conclusion, Ochrobactrum sp. MPV1 has demonstrated to be an ideal candidate for the bioconversion of toxic oxyanions such as selenite and tellurite to their respective elemental forms, producing intracellular Se- and TeNPs possibly exploitable in biomedical and industrial applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms

The present study deals with Se(0)- and Te(0)-based nanoparticles bio-synthesized by two selenite- and tellurite-reducing bacterial strains, namely Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1, isolated from polluted sites. We evidenced that, by regulating culture conditions and exposure time to the selenite and tellurite oxyanions, differently sized zero-valent Se and Te nano...

متن کامل

Biosynthesis and characterization of biogenic tellurium nanoparticles by using Penicillium chrysogenum PTCC 5031: A novel approach in gold biotechnology

Production of nanoparticles has been attractive by biological based fabrication as an alternative to physical and chemical approaches due to exceeding need to develop safe, reliable, clean and eco-friendly methods for the preparation of nanoparticle for pharmaceutical and biomedical applications. In the present study, biogenic tellurium nanoparticles (TeNPs) were successfully prepared using pot...

متن کامل

Biosynthesis and characterization of biogenic tellurium nanoparticles by using Penicillium chrysogenum PTCC 5031: A novel approach in gold biotechnology

Production of nanoparticles has been attractive by biological based fabrication as an alternative to physical and chemical approaches due to exceeding need to develop safe, reliable, clean and eco-friendly methods for the preparation of nanoparticle for pharmaceutical and biomedical applications. In the present study, biogenic tellurium nanoparticles (TeNPs) were successfully prepared using pot...

متن کامل

Evaluation of Antioxidant, Antibacterial and Photo catalytic Effect of Silver Nanoparticles from Methanolic Extract of Coleus Vettiveroids – an Endemic Species

Biosynthesis of metal nanoparticles using plant extract has received much attention due to its eco-friendly nature. The present study elucidates the green synthesize of Silver nanoparticles (AgNPs) from methanolic extract of Coleus Vettiveroids –an endemic species. The synthesis of AgNPs was confirmed by UV-visible spectrometry at 416 nm. Further, biosynthesized nanoparticles were characterized...

متن کامل

A simple method for the recovery of selenium from copper anode slime sample using alkaline roasting process

The recovery of selenium from Iranian sar-cheshmeh copper anode slime has been investigated. Copper anode slimes are containing varying precious metals, such as: gold, silver, selenium and tellurium. They are being extracted as a by-product in the production process. Arsenic and antimony that present in anode slimes dissolved in 0.4 M KOH. Then, the alkaline roasting of anode slimes in the pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017