Separate entry pathways for phosphate and oxalate in rat brain microsomes.
نویسندگان
چکیده
ATP-dependent (45)Ca uptake in rat brain microsomes was measured in intracellular-like media containing different concentrations of PO(4) and oxalate. In the absence of divalent anions, there was a transient (45)Ca accumulation, lasting only a few minutes. Addition of PO(4) did not change the initial accumulation but added a second stage that increased with PO(4) concentration. Accumulation during the second stage was inhibited by the following anion transport inhibitors: niflumic acid (50 microM), 4,4'-dinitrostilbene-2, 2'-disulfonic acid (DNDS; 250 microM), and DIDS (3-5 microM); accumulation during the initial stage was unaffected. Higher concentrations of DIDS (100 microM), however, inhibited the initial stage as well. Uptake was unaffected by 20 mM Na, an activator, or 1 mM arsenate, an inhibitor of Na-PO(4) cotransport. An oxalate-supported (45)Ca uptake was larger, less sensitive to DIDS, and enhanced by the catalytic subunit of protein kinase A (40 U/ml). Combinations of PO(4) and oxalate had activating and inhibitory effects that could be explained by PO(4) inhibition of an oxalate-dependent pathway, but not vice versa. These results support the existence of separate transport pathways for oxalate and PO(4) in brain endoplasmic reticulum.
منابع مشابه
Adenosine Triphosphate-Dependent Calcium Uptake by Rat Submaxillary Gland Microsomes
Microsomes from rat submaxillary glands are able to take up calcium from the suspension media. Calcium uptake is greatly increased by the presence of ATP. This effect of ATP is not detected at 0 degrees C. ADP cannot replace ATP to potentiate calcium uptake. ATP-dependent calcium uptake is not observed in the absence of magnesium. ATP-dependent calcium uptake is enhanced by oxalate and, to a le...
متن کاملInhibition of sphingosine kinase in vitro and in platelets. Implications for signal transduction pathways.
Sphingosine kinase was partially purified and characterized from rat brain microsomes. A new assay, utilizing octyl-beta-D-glucopyranoside and sphingosine mixed micelles, was developed to quantitate formation of the sphingosine-1-phosphate product. The assay was proportional with respect to time and protein, displayed Michaelis-Menten kinetics, and was subject to surface dilution in regard to t...
متن کاملGlucose-6-phosphate reduces calcium accumulation in rat brain endoplasmic reticulum
Brain cells expend large amounts of energy sequestering calcium (Ca(2+)), while loss of Ca(2+) compartmentalization leads to cell damage or death. Upon cell entry, glucose is converted to glucose-6-phosphate (G6P), a parent substrate to several metabolic major pathways, including glycolysis. In several tissues, G6P alters the ability of the endoplasmic reticulum (ER) to sequester Ca(2+). This l...
متن کاملSelective inhibition of oxalate-stimulated Ca2+ transport by cyclopiazonic acid and thapsigargin in smooth muscle microsomes.
45Ca2+ uptake and efflux studies were performed on membranes prepared from dog mesenteric artery and rat vas deferens. Oxalate-stimulated, ATP-dependent Ca2+ uptake in microsomal vesicles, a property characteristic of sarcoplasmic reticulum, was completely inhibited in a concentration-dependent manner by cyclopiazonic acid (0.1-30 microM) and thapsigargin (10 nM-10 microM). Using discontinuous ...
متن کاملThe Effects of Hypo- and Hyperthyroidism on Glucose 6-Phosphate Dehydrogenase Activities in Regions of Rat Brain
The variations of glucose 6-phosphate dehydrogenase (G6PD) activity in different brain regions of normal, hypo- and hyperthyroid rats were investigated. Hypo- and hyperthyrodism were experimentaly induced by administration of methimazol and liothyronine, respectively. In normal rats, midbrain had the minimum (70 mU/mg) and cerebral cortex the maximum (349 mU/mg) G6PD activity. Hyperthyrodism in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 278 6 شماره
صفحات -
تاریخ انتشار 2000