Energy and antioxidant responses of pacific oyster exposed to trace levels of pesticides.

نویسندگان

  • Yanouk Epelboin
  • Claudie Quéré
  • Fabrice Pernet
  • Vianney Pichereau
  • Charlotte Corporeau
چکیده

Here, we assess the physiological effects induced by environmental concentrations of pesticides in Pacific oyster Crassostrea gigas. Oysters were exposed for 14 d to trace levels of metconazole (0.2 and 2 μg/L), isoproturon (0.1 and 1 μg/L), or both in a mixture (0.2 and 0.1 μg/L, respectively). Exposure to trace levels of pesticides had no effect on the filtration rate, growth, and energy reserves of oysters. However, oysters exposed to metconazole and isoproturon showed an overactivation of the sensing-kinase AMP-activated protein kinase α (AMPKα), a key enzyme involved in energy metabolism and more particularly glycolysis. In the meantime, these exposed oysters showed a decrease in hexokinase and pyruvate kinase activities, whereas 2-DE proteomic revealed that fructose-1,6-bisphosphatase (F-1,6-BP), a key enzyme of gluconeogenesis, was up-regulated. Activities of antioxidant enzymes were higher in oysters exposed to the highest pesticide concentrations. Both pesticides enhanced the superoxide dismutase activity of oysters. Isoproturon enhanced catalase activity, and metconazole enhanced peroxiredoxin activity. Overall, our results show that environmental concentrations of metconazole or isoproturon induced subtle changes in the energy and antioxidant metabolisms of oysters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response of the Pacific oyster Crassostrea gigas, Thunberg 1793, to pesticide exposure under experimental conditions.

Pesticide run-off into the ocean represents a potential threat to marine organisms, especially bivalves living in coastal environments. However, little is known about the effects of environmentally relevant concentrations of pesticides at the individual level. In this study, the suppression subtractive hybridisation technique was used to discover the main physiological function affected by a co...

متن کامل

Characterisation and expression of four mRNA sequences encoding glutathione S-transferases pi, mu, omega and sigma classes in the Pacific oyster Crassostrea gigas exposed to hydrocarbons and pesticides

Hydrocarbon and pesticide pollution in coastal ecosystems can disturb marine bivalve metabolism. In this study, we characterised four full-length cDNA sequences encoding glutathione S-transferases (GSTs) in the Pacific oyster Crassostrea gigas. A BLAST X search showed that these four sequences encode GSTs from four different classes: GST pi, sigma, mu and omega. A phylogenetic analysis of GST w...

متن کامل

Pacific oyster (Crassostrea gigas) hemocyte are not affected by a mixture of pesticides in short-term in vitro assays.

Pesticides are frequently detected in estuaries among the pollutants found in estuarine and coastal areas and may have major ecological consequences. They could endanger organism growth, reproduction, or survival. In the context of high-mortality outbreaks affecting Pacific oysters, Crassostrea gigas, in France since 2008, it appears of importance to determine the putative effects of pesticides...

متن کامل

Metabolism of the Pacific oyster, Crassostrea gigas, is influenced by salinity and modulates survival to the Ostreid herpesvirus OsHV-1

The Pacific oyster, Crassostrea gigas, is an osmoconforming bivalve exposed to wide salinity fluctuations. The physiological mechanisms used by oysters to cope with salinity stress are energy demanding and may impair other processes, such as defense against pathogens. This oyster species has been experiencing recurrent mortality events caused by the Ostreid herpesvirus 1 (OsHV-1). The objective...

متن کامل

Pesticides and Ostreid Herpesvirus 1 Infection in the Pacific Oyster, Crassostrea gigas

Since 2008, mass mortality outbreaks have been reported in all French regions producing Pacific oysters, and in several Member States of the European Union. These mass mortality events of Pacific oysters are related to OsHV-1 infection. They occur during spring and summer periods leaving suspect the quality of the marine environment and the role of seasonal use of pesticides associated with the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical research in toxicology

دوره 28 9  شماره 

صفحات  -

تاریخ انتشار 2015