Communication: Designed diamond ground state via optimized isotropic monotonic pair potentials.
نویسندگان
چکیده
We apply inverse statistical-mechanical methods to find a simple family of optimized isotropic, monotonic pair potentials (that may be experimentally realizable) whose classical ground state is the diamond crystal for the widest possible pressure range, subject to certain constraints (e.g., desirable phonon spectra). We also ascertain the ground-state phase diagram for a specific optimized potential to show that other crystal structures arise for pressures outside the diamond stability range. Cooling disordered configurations interacting with our optimized potential to absolute zero frequently leads to the desired diamond crystal ground state, revealing that the capture basin for the global energy minimum is large and broad relative to the local energy minima basins.
منابع مشابه
Unusual ground states via monotonic convex pair potentials.
We have previously shown that inverse statistical-mechanical techniques allow the determination of optimized isotropic pair interactions that self-assemble into low-coordinated crystal configurations in the d-dimensional Euclidean space R(d). In some of these studies, pair interactions with multiple extrema were optimized. In the present work, we attempt to find pair potentials that might be ea...
متن کاملOptimized monotonic convex pair potentials stabilize low-coordinated crystals
We have previously used inverse statistical-mechanical methods to optimize isotropic pair interactions with multiple extrema to yield low-coordinated crystal classical ground states (e.g., honeycomb and diamond structures) in d-dimensional Euclidean space R. Here we demonstrate the counterintuitive result that no extrema are required to produce such low-coordinated classical ground states. Spec...
متن کاملProbing the limitations of isotropic pair potentials to produce ground-state structural extremes via inverse statistical mechanics.
Inverse statistical-mechanical methods have recently been employed to design optimized short-range radial (isotropic) pair potentials that robustly produce novel targeted classical ground-state many-particle configurations. The target structures considered in those studies were low-coordinated crystals with a high degree of symmetry. In this paper, we further test the fundamental limitations of...
متن کاملOptimized interactions for targeted self-assembly: application to a honeycomb lattice.
We devise an inverse statistical-mechanical methodology to find optimized interaction potentials that lead spontaneously to a target many-particle configuration. Target structures can possess varying degrees of disorder, thus extending the traditional idea of self-assembly to incorporate both amorphous and crystalline structures as well as quasicrystals. For illustration purposes, our computati...
متن کاملSelf-assembly of the simple cubic lattice with an isotropic potential.
Conventional wisdom presumes that low-coordinated crystal ground states require directional interactions. Using our recently introduced optimization procedure to achieve self-assembly of targeted structures [M. C. Rechtsman, Phys. Rev. Lett. 95, 228301 (2005); Phys. Rev. E 73, 011406 (2006)], we present an isotropic pair potential V(r) for a three-dimensional many-particle system whose classica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 138 6 شماره
صفحات -
تاریخ انتشار 2013