Second Order Difference Equations and Discrete Orthogonal Polynomials of Two Variables

نویسنده

  • YUAN XU
چکیده

The second order partial difference equation of two variables Du := A1,1(x)∆1∇1u+A1,2(x)∆1∇2u+ A2,1(x)∆2∇1u+ A2,2(x)∆2∇2u + B1(x)∆1u+ B2(x)∆2u = λu, is studied to determine when it has orthogonal polynomials as solutions. We derive conditions on D so that a weight function W exists for which WDu is self-adjoint and the difference equation has polynomial solutions which are orthogonal with respect to W . The solutions are essentially the classical discrete orthogonal polynomials of two variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

Discrete Orthogonal Polynomials and Difference Equations of Several Variables

The goal of this work is to characterize all second order difference operators of several variables that have discrete orthogonal polynomials as eigenfunctions. Under some mild assumptions, we give a complete solution of the problem.

متن کامل

On Fourth-order Difference Equations for Orthogonal Polynomials of a Discrete Variable: Derivation, Factorization and Solutions

We derive and factorize the fourth-order difference equations satisfied by orthogonal polynomials obtained from some modifications of the recurrence coefficients of classical discrete orthogonal polynomials such as: the associated, the general co-recursive, co-recursive associated, co-dilated and the general co-modified classical orthogonal polynomials. Moreover, we find four linearly independe...

متن کامل

Matrix Pearson equations satisfied by Koornwinder weights in two variables

We consider Koornwinder’s method for constructing orthogonal polynomials in two variables from orthogonal polynomials in one variable. If semiclassical orthogonal polynomials in one variable are used, then Koornwinder’s construction generates semiclassical orthogonal polynomials in two variables. We consider two methods for deducing matrix Pearson equations for weight functions associated with ...

متن کامل

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002