Recruitment of mismatch repair proteins to the site of DNA damage in human cells.
نویسندگان
چکیده
Mismatch repair (MMR) proteins contribute to genome stability by excising DNA mismatches introduced by DNA polymerase. Although MMR proteins are also known to influence cellular responses to DNA damage, how MMR proteins respond to DNA damage within the cell remains unknown. Here, we show that MMR proteins are recruited immediately to the sites of various types of DNA damage in human cells. MMR proteins are recruited to single-strand breaks in a poly(ADP-ribose)-dependent manner as well as to double-strand breaks. Using mutant cells, RNA interference and expression of fluorescence-tagged proteins, we show that accumulation of MutSbeta at the DNA damage site is solely dependent on the PCNA-binding domain of MSH3, and that of MutSalpha depends on a region near the PCNA-binding domain of MSH6. MSH2 is recruited to the DNA damage site through interactions with either MSH3 or MSH6, and is required for recruitment of MLH1 to the damage site. We found, furthermore, that MutSbeta is also recruited to UV-irradiated sites in nucleotide-excision-repair- and PCNA-dependent manners. Thus, MMR and its proteins function not only in replication but also in DNA repair.
منابع مشابه
Studies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay
Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...
متن کاملEffects of low dose radiation on the expression of proteins related to DNA repair requiring Caveolin-1 in human mammary epithelial cells
Background: Radiotherapy is an effective and important therapeutic method for breast cancer, but at the same time it has a radiation-induced bystander effect on normal tissue around the tumor. Repair of double-strand breaks (DSBs) by normal cells can reduce the extent of damage caused by this effect. Caveolin-1 (Cav-1) is an important regulatory molecule in cell signal transduction. However, th...
متن کاملThe Role of DNA Mismatch Repair and Recombination in the Processing of DNA Alkylating Damage in Living Yeast Cells
It is proposed that mismatch repair (MMR) mediates the cytotoxic effects of DNA damaging agents by exerting a futile repair pathway which leads to double strand breaks (DSBs). Previous reports indicate that the sensitivity of cells defective in homologous recombination (HR) to DNA alkylation is reduced by defects in MMR genes. We have assessed the contribution of different MMR genes to the proc...
متن کاملMismatch repair processing of carcinogen-DNA adducts triggers apoptosis.
The DNA mismatch repair pathway is well known for its role in correcting biosynthetic errors of DNA replication. We report here a novel role for mismatch repair in signaling programmed cell death in response to DNA damage induced by chemical carcinogens. Cells proficient in mismatch repair were highly sensitive to the cytotoxic effects of chemical carcinogens, while cells defective in either hu...
متن کاملDNA-Repair Capacity in Down\'s Syndrome
Down's syndrome (DS) is the most common chromosomal abnormality in human. Subjects with DS are known to be peridisposed to develop leukemia. The molecular basis of the association between DS and leukemia is unknown. The unscheduled DNA synthesis (UDS) test measure the ability of DNA-repair in mammalian cells after excision of a stretch of DNA containing the region of damage induced by chemical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 121 Pt 19 شماره
صفحات -
تاریخ انتشار 2008