Dynamics of the Firing Probability of Noisy Integrate-and-Fire Neurons
نویسندگان
چکیده
Cortical neurons in vivo undergo a continuous bombardment due to synaptic activity, which acts as a major source of noise. Here, we investigate the effects of the noise filtering by synapses with various levels of realism on integrate-and-fire neuron dynamics. The noise input is modeled by white (for instantaneous synapses) or colored (for synapses with a finite relaxation time) noise. Analytical results for the modulation of firing probability in response to an oscillatory input current are obtained by expanding a Fokker-Planck equation for small parameters of the problem - when both the amplitude of the modulation is small compared to the background firing rate and the synaptic time constant is small compared to the membrane time constant. We report here the detailed calculations showing that if a synaptic decay time constant is included in the synaptic current model, the firing-rate modulation of the neuron due to an oscillatory input remains finite in the high-frequency limit with no phase lag. In addition, we characterize the low-frequency behavior and the behavior of the high-frequency limit for intermediate decay times. We also characterize the effects of introducing a rise time to the synaptic currents and the presence of several synaptic receptors with different kinetics. In both cases, we determine, using numerical simulations, an effective decay time constant that describes the neuronal response completely.
منابع مشابه
Firing rate of noisy integrate-and-fire neurons with synaptic current dynamics.
We derive analytical formulas for the firing rate of integrate-and-fire neurons endowed with realistic synaptic dynamics. In particular, we include the possibility of multiple synaptic inputs as well as the effect of an absolute refractory period into the description. The latter affects the firing rate through its interaction with the synaptic dynamics.
متن کاملPopulation Dynamics of Spiking Neurons: Fast Transients, Asynchronous States, and Locking
An integral equation describing the time evolution of the population activity in a homogeneous pool of spiking neurons of the integrate-and-fire type is discussed. It is analytically shown that transients from a state of incoherent firing can be immediate. The stability of incoherent firing is analyzed in terms of the noise level and transmission delay, and a bifurcation diagram is derived. The...
متن کاملSynchronization and spindle oscillation in noisy integrate-and-fire-or-burst neurons with inhibitory coupling
We propose another integrate-and-fire model as a single neuron model. We study a globally coupled noisy integrate-and-fire model with inhibitory interaction using the Fokker-Planck equation and the Langevin equation, and find a reentrant transition of oscillatory states. Intermittent time evolutions of neuron firing are found in strongly inhibited systems. We propose another integrate-and-fire-...
متن کاملAnalysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states
Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibr...
متن کاملMultistability, local pattern formation, and global collective firing in a small-world network of nonleaky integrate-and-fire neurons.
We investigate numerically the collective dynamical behavior of pulse-coupled nonleaky integrate-and-fire neurons that are arranged on a two-dimensional small-world network. To ensure ongoing activity, we impose a probability for spontaneous firing for each neuron. We study network dynamics evolving from different sets of initial conditions in dependence on coupling strength and rewiring probab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 14 9 شماره
صفحات -
تاریخ انتشار 2002