Global transcriptome analysis identifies regulated transcripts and pathways activated during oogenesis and early embryogenesis in atlantic cod
نویسندگان
چکیده
The molecular mechanisms underlying oogenesis and maternally controlled embryogenesis in fish are not fully understood, especially in marine species. Our aim was to study the egg and embryo transcriptome during oogenesis and early embryogenesis in Atlantic cod. Follicles from oogenesis stages (pre-, early-, and late-vitellogenic), ovulated eggs, and two embryonic stages (blastula, gastrula) were collected from broodstock fish and fertilized eggs. Gene expression profiles were measured in a 44 K oligo microarray consisting of 23,000 cod genes. Hundreds of differentially expressed genes (DEGs) were identified in the follicle stages investigated, implicating a continuous accumulation and degradation of polyadenylated transcripts throughout oogenesis. Very few DEGs were identified from ovulated egg to blastula, showing a more stable maternal RNA pool in early embryonic stages. The highest induction of expression was observed between blastula and gastrula, signifying the onset of zygotic transcription. During early vitellogenesis, several of the most upregulated genes are linked to nervous system signaling, suggesting increasing requirements for ovarian synaptic signaling to stimulate the rapid growth of oocytes. Highly upregulated genes during late vitellogenesis are linked to protein processing, fat metabolism, osmoregulation, and arrested meiosis. One of the genes with the highest upregulation in the ovulated egg is involved in oxidative phosphorylation, reflecting increased energy requirements during fertilization and the first rapid cell divisions of early embryogenesis. In conclusion, this study provides a large-scale presentation of the Atlantic cod's maternally controlled transcriptome in ovarian follicles through oogenesis, ovulated eggs, and early embryos.
منابع مشابه
Gene Expression Profile Analysis during Mouse Tooth Development
Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...
متن کاملطرح تحلیل تعدادی از mRNA های مادری مخصوص اووسیت در جنین تک سلولی موش
Introduction & Objective: During oogenesis, mRNA is actively transcribed and accumulated in the growing oocytes, and then the transcription stops. Transcription silencing will continue during early embryonic stages at least up to the time when the embryonic genome is activated. Thus the earliest stages of embryogenesis in mammals and other animal species are depending on stored maternal RNAs an...
متن کاملCytoplasmic polyadenylation is a major mRNA regulator during oogenesis and egg activation in Drosophila.
The GLD-2 class of poly(A) polymerases regulate the timing of translation of stored transcripts by elongating the poly(A) tails of target mRNAs in the cytoplasm. WISPY is a GLD-2 enzyme that acts in the Drosophila female germline and is required for the completion of the egg-to-embryo transition. Though a handful of WISPY target mRNAs have been identified during both oogenesis and early embryog...
متن کاملExpression of protein tyrosine phosphatase genes during oogenesis in Drosophila melanogaster
The spatial and temporal expression of seven Drosophila protein tyrosine phosphatase genes during oogenesis was examined by whole mount in-situ hybridization of antisense RNA probes to ovaries. Our observations indicate diverse expression patterns consistent with multiple roles for protein tyrosine phosphatases in the ovary. DPTP99A and corkscrew transcripts are expressed in follicle cells, con...
متن کاملTranscriptome profiling in AGD-affected Atlantic salmon 1 Transcriptome profiling the gills of amoebic gill disease (AGD)-affected Atlantic salmon (Salmo salar L.) - A role for tumor suppressor p53 in AGD-pathogenesis?
Neoparamoeba spp. are amphizoic amoebae with the capacity to colonize the gills of some marine fish, causing amoebic gill disease (AGD). Here, the gill tissue transcriptome response of Atlantic salmon (Salmo salar L.) to AGD is described. Tanks housing Atlantic salmon were inoculated with Neoparamoeba spp. and fish sampled at time points up to 8 days post-inoculation (p.i.). Gill tissues were t...
متن کامل