Upward Geometric Graph Embeddings into Point Sets
نویسندگان
چکیده
We study the problem of characterizing the directed graphs with an upward straightline embedding into every point set in general or in convex position. We solve two questions posed by Binucci et al. [Computational Geometry: Theory and Applications, 2010 ]. Namely, we prove that the classes of directed graphs with an upward straightline embedding into every point set in convex position and with an upward straight-line embedding into every point set in general position do not coincide, and we prove that every directed caterpillar admits an upward straight-line embedding into every point set in convex position. Further, we provide new partial positive results on the problem of constructing upward straight-line embeddings of directed paths into point sets in general position.
منابع مشابه
Upward Straight-Line Embeddings of Directed Graphs into Point Sets
In this paper we consider the problem of characterizing the directed graphs that admit an upward straight-line embedding into every point set in convex or in general position. In particular, we show that no biconnected directed graph admits an upward straight-line embedding into every point set in convex position, and we provide a characterization of the Hamiltonian directed graphs that admit u...
متن کاملComplexity of Finding Non-Planar Rectilinear Drawings of Graphs
Monotone Drawings of Graphs p. 13 Upward Geometric Graph Embeddings into Point Sets p. 25 On a Tree and a Path with No Geometric Simultaneous Embedding p. 38 Difference Map Readability for Dynamic Graphs p. 50 Maximizing the Total Resolution of Graphs p. 62 Plane Drawings of Queue and Deque Graphs p. 68 An Experimental Evaluation of Multilevel Layout Methods p. 80 Orthogonal Graph Drawing with ...
متن کاملLabeling Subgraph Embeddings and Cordiality of Graphs
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
متن کاملDirected Graphs with an Upward Straight-line Embedding into Every Point Set
In this paper we study the problem of computing an upward straight-line embedding of a directed graph G into a point set S, i.e. a planar drawing of G such that each vertex is mapped to a point of S, each edge is drawn as a straight-line segment, and all the edges are oriented according to a common direction. We characterize the family of directed graphs that admit an upward straight-line embed...
متن کاملSpine Crossing Minimization in Upward Topological Book Embeddings
An upward topological book embedding of a planar st-digraph G is an upward planar drawing of G such that its vertices are aligned along the vertical line, called the spine, and each edge is represented as a simple Jordan curve which is divided by the intersections with the spine (spine crossings) into segments such that any two consecutive segments are located at opposite sides of the spine. Wh...
متن کامل