Short-Term Coalmine Gas Concentration Prediction Based on Wavelet Transform
نویسنده
چکیده
It is well known that coalmine gas concentration forecasting is very significant to ensure the safety of mining. Owing to the high-frequency, non-stationary, fluctuations, and chaotic properties of the gas concentration time series, a gas concentration forecasting model utilizing the original raw data often leads to an inability to provide satisfying forecast results. A hybrid forecasting model that integrates wavelet transform and extreme learning machine (ELM) termed as WELM (wavelet based ELM) for coalmine gas concentration is proposed. Firstly, the proposed model employ Mallat algorithm to decompose and reconstruct the gas concentration time series to isolate the low-frequency and high-frequency information. Then, ELM model is built for the prediction of each component. At last, these predicted values are superimposed to obtain the predicted values of the original sequence. This method makes an effective separation of the feature information of gas concentration time series and takes full advantage of multi-ELM prediction models with different parameters to achieve divide and rule. Comparative studies with existing prediction models indicate that the proposed model is very promising and can be implemented in a real-time one-step or multi-step ahead prediction.
منابع مشابه
Short term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملShort Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression
The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...
متن کاملCombine Multi-predictor of Gas Concentration Prediction Based on Wavelet Transforms
A method of combine multi-predictor is proposed based on wavelet transform to improve the prediction precision of coal mine gas concentration time series. Firstly, the proposed model employ Mallat algorithm to decompose and reconstruct the gas concentration time series to isolate the lowfrequency and high-frequency information. Then, ARMA model is built for the prediction of highfrequency infor...
متن کاملWavelet-based Forecasting of Short and Long Memory Time Series
A wavelet-based forecasting method for time series is introduced. It is based on a multiple resolution decomposition of the signal, using the redundant “à trous” wavelet transform which has the advantage of being shift-invariant. The result is a decomposition of the signal into a range of frequency scales. The prediction is based on a small number of coefficients on each of these scales. In its...
متن کاملWavelet Network Model and Its Application to the Prediction of Hydrology
Based on the multi-time scale and the nonlinear characteristics of the observed time series, a new hybrid model between wavelet analysis and artificial neural network (ANN): wavelet network model, has been suggested. The present model absorbs some merits of wavelet transform and artificial neural network. Case studies, the short and long term prediction of hydrological time series, have been re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016