Sparsity-regularized image reconstruction of decomposed K-edge data in spectral CT.
نویسندگان
چکیده
The development of spectral computed tomography (CT) using binned photon-counting detectors has garnered great interest in recent years and has enabled selective imaging of K-edge materials. A practical challenge in CT image reconstruction of K-edge materials is the mitigation of image artifacts that arise from reduced-view and/or noisy decomposed sinogram data. In this note, we describe and investigate sparsity-regularized penalized weighted least squares-based image reconstruction algorithms for reconstructing K-edge images from few-view decomposed K-edge sinogram data. To exploit the inherent sparseness of typical K-edge images, we investigate use of a total variation (TV) penalty and a weighted sum of a TV penalty and an ℓ1-norm with a wavelet sparsifying transform. Computer-simulation and experimental phantom studies are conducted to quantitatively demonstrate the effectiveness of the proposed reconstruction algorithms.
منابع مشابه
Sparse CT reconstruction based on multi-direction anisotropic total variation (MDATV)
BACKGROUND The sparse CT (Computed Tomography), inspired by compressed sensing, means to introduce a prior information of image sparsity into CT reconstruction to reduce the input projections so as to reduce the potential threat of incremental X-ray dose to patients' health. Recently, many remarkable works were concentrated on the sparse CT reconstruction from sparse (limited-angle or few-view ...
متن کاملHow little data is enough? Phase-diagram analysis of sparsity-regularized X-ray CT
We introduce phase-diagram analysis, a standard tool in compressed sensing, to the X-ray CT community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In compressed sensing a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram anal...
متن کاملHyperspectral Data Reconstruction Combining Spatial and Spectral Sparsity
This report introduces a novel sparse decomposition model for hyperspectral image reconstruction. The model integrates two well-known sparse structures of hyperspectral images: a small set of signature spectral vectors span all spectral vectors (one at each pixel), and like a standard image, a hyperspectral image is spatially redundant. In our model, a threedimensional hyperspectral cube X is f...
متن کاملHow little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography
We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-...
متن کاملFast Splitting-Based Ordered-Subsets X-Ray CT Image Reconstruction
Using non-smooth regularization in X-ray computed tomography (CT) image reconstruction has become more popular these days due to the recent resurgence of the classic augmented Lagrangian (AL) methods in fields such as totalvariation (TV) denoising and compressed sensing (CS). For example, undersampling projection views is one way to reduce radiation dose in CT scans; however, this causes strong...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 59 10 شماره
صفحات -
تاریخ انتشار 2014