Fully controllable adiabatic geometric phase in nonlinear optics.

نویسندگان

  • Aviv Karnieli
  • Ady Arie
چکیده

We propose and analyze a new way for obtaining an adiabatic geometric phase for light, via the sum-frequency-generation nonlinear process. The state of light is represented by the complex amplitudes at two different optical frequencies, coupled by the second order nonlinearity of the medium. The dynamics of this system is then shown to be equivalent to that of a spin-1/2 particle in a magnetic field, which in turn can be rotated adiabatically on the Bloch sphere. When the input wave itself is an eigenstate of the magnetic field equivalent, the geometric phase is manifested as a pure phase factor. Two adiabatic rotation schemes, based on specific modulations of the quasi-phase-matching poling parameters, are discussed. In the first, the geometric phase is shown to be sensitive to the pump intensity variations, as a result of the Bloch sphere deformation. The second can be utilized for the realization of nonlinear-optics-based geometric phase plates. Moreover, non-closed adiabatic trajectories are investigated, which are expected to provide a robust and broadband geometric wavefront shaping in the sum frequency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient, broadband, and robust frequency conversion by fully nonlinear adiabatic three-wave mixing

A comprehensive physical model of adiabatic three-wave mixing is developed for the fully nonlinear regime, i.e., without making the undepleted pump approximation. The conditions for adiabatic evolution are rigorously derived, together with an estimate of the bandwidth of the process. Furthermore, these processes are shown to be robust and efficient. Finally, numerical simulations demonstrate ad...

متن کامل

Observation of a non-adiabatic geometric phase for elastic waves

We report the experimental observation of a geometric phase for elastic waves in a waveguide with helical shape. The setup reproduces the experiment by Tomita and Chiao (Phys. Rev. Lett. 57, 1986) that showed first evidence of a Berry phase, a geometric phase for adiabatic time evolution, in optics. Experimental evidence of non-adiabatic geometric has been reported in quantum mechanics. We have...

متن کامل

Geometric phase for adiabatic evolutions of general quantum states.

The concept of a geometric phase (Berry's phase) is generalized to the case of noneigenstates, which is applicable to both linear and nonlinear quantum systems. This is particularly important to nonlinear quantum systems, where, due to the lack of the superposition principle, the adiabatic evolution of a general state cannot be described in terms of eigenstates. For linear quantum systems, our ...

متن کامل

Fully efficient adiabatic frequency conversion of broadband Ti:sapphire oscillator pulses.

By adiabatic difference-frequency generation in an aperiodically poled nonlinear crystal-a nonlinear optical analog of rapid adiabatic passage in a two-level atomic system-we demonstrate the conversion of a 110 nm band from an octave-spanning Ti:sapphire oscillator to the infrared, spanning 1550 to 2450 nm, with near-100% internal conversion efficiency. The experiment proves the principle of co...

متن کامل

Nonlinear Geometric Optics method based multi-scale numerical schemes for highly-oscillatory transport equations

We introduce a new numerical strategy to solve a class of oscillatory transport PDE models which is able to capture accurately the solutions without numerically resolving the high frequency oscillations in both space and time. Such PDE models arise in semiclassical modeling of quantum dynamics with band-crossings, and other highly oscillatory waves. Our first main idea is to use the nonlinear g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 26 4  شماره 

صفحات  -

تاریخ انتشار 2018