Signal Separation Of Helicopter Radar Returns Using Wavelet-Based Sparse Signal Optimisation
نویسندگان
چکیده
A novel wavelet-based sparse signal representation technique is used to separate the main and tail rotor blade components of a helicopter from the composite radar returns. The received signal consists of returns from the rotating main and tail rotor blades, the helicopter body, possible land or sea clutter, and other residual components, which may all overlap in time and frequency; and therefore conventional time and frequency separation techniques cannot be applied. A sparse signal representation technique is now proposed for this problem with the tunable Q wavelet transform used as the dictionary. The proposed algorithm is demonstrated using both simulated and real radar data (X and Ku-band), and is capable of extracting the components of interest successfully. RELEASE LIMITATION Approved for public release
منابع مشابه
Performance Improvement of Radar Target Detection by Wavelet-based Denoising Methods
With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...
متن کاملPerformance Improvement of Radar Target Detection by Wavelet-based Denoising Methods
With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...
متن کاملHelicopter radar return analysis: Estimation and blade number selection
The problem of helicopter parameter estimation and blade number selection is addressed. The parameters are estimated based on Maximum Likelihood methods, and the corresponding Cramér-Rao bounds are derived. To avoid ambiguities in blade number estimation, we apply information theoretic criteria for blade number selection incorporating alternate penalty functions. We assume that a clutter filter...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کامل