Uromodulin mutations causing familial juvenile hyperuricaemic nephropathy lead to protein maturation defects and retention in the endoplasmic reticulum.
نویسندگان
چکیده
Familial juvenile hyperuricaemic nephropathy (FJHN), an autosomal dominant disorder, is caused by mutations in the UMOD gene, which encodes Uromodulin, a glycosylphosphatidylinositol-anchored protein that is expressed in the thick ascending limb of the loop of Henle and excreted in the urine. Uromodulin contains three epidermal growth factor (EGF)-like domains, a cysteine-rich region which includes a domain of eight cysteines and a zona pellucida (ZP) domain. Over 90% of UMOD mutations are missense, and 62% alter a cysteine residue, implicating a role for protein misfolding in the disease. We investigated 20 northern European FJHN probands for UMOD mutations. Wild-type and mutant Uromodulins were functionally studied by expression in HeLa cells and by the use of western blot analysis and confocal microscopy. Six different UMOD missense mutations (Cys32Trp, Arg185Gly, Asp196Asn, Cys217Trp, Cys223Arg and Gly488Arg) were identified. Patients with UMOD mutations were phenotypically similar to those without UMOD mutations. The mutant Uromodulins had significantly delayed maturation, retention in the endoplasmic reticulum (ER) and reduced expression at the plasma membrane. However, Gly488Arg, which is the only mutation we identified in the ZP domain, was found to be associated with milder in vitro abnormalities and to be the only mutant Uromodulin detected in conditioned medium from transfected cells, indicating that the severity of the mutant phenotypes may depend on their location within the protein. Thus, FJHN-causing Uromodulin mutants are retained in the ER, with impaired intracellular maturation and trafficking, thereby indicating mechanisms whereby Uromodulin mutants may cause the phenotype of FJHN.
منابع مشابه
Functional consequences of a novel uromodulin mutation in a family with familial juvenile hyperuricaemic nephropathy.
BACKGROUND Familial juvenile hyperuricaemic nephropathy (FJHN) is an autosomal-dominant disorder featuring hyperuricaemia, low fractional urate excretion, interstitial nephritis and chronic renal failure. The responsible gene UMOD was recently identified. UMOD encodes for uromodulin or Tamm-Horsfall glycoprotein, the most abundant protein in normal urine. We encountered a family with FJHN and i...
متن کاملAllelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics.
The disease complex medullary cystic disease/familial juvenile hyperuricemic nephropathy (MCKD/FJHN) is characterized by alteration of urinary concentrating ability, frequent hyperuricemia, tubulo-interstitial fibrosis, cysts at the cortico-medullary junction and renal failure. MCKD/FJHN is caused by mutations of the gene encoding uromodulin, the most abundant protein in urine. Here, we describ...
متن کاملOutcome of kidney transplantation in familial juvenile hyperuricaemic nephropathy.
Familial juvenile hyperuricaemic nephropathy (FJHN) and medullary cystic kidney disease (MCKD) are rare autosomal-dominant disorders, both characterized by early hyperuricaemia due to reduced urinary excretion of urate and the development of chronic interstitial nephropathy, most often leading to end-stage renal failure (ESRF) in adulthood. Although a history of gout is more frequently reported...
متن کاملA mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress
Renal fibrosis is a common feature of renal failure resulting from multiple etiologies, including diabetic nephropathy, hypertension and inherited renal disorders. However, the mechanisms of renal fibrosis are incompletely understood and we therefore explored these by establishing a mouse model for a renal tubular disorder, referred to as autosomal dominant tubulointerstitial kidney disease (AD...
متن کاملUromodulin Retention in Thick Ascending Limb of Henle's Loop Affects SCD1 in Neighboring Proximal Tubule: Renal Transcriptome Studies in Mouse Models of Uromodulin-Associated Kidney Disease
Uromodulin-associated kidney disease (UAKD) is a hereditary progressive renal disease which can lead to renal failure and requires renal replacement therapy. UAKD belongs to the endoplasmic reticulum storage diseases due to maturation defect of mutant uromodulin and its retention in the enlarged endoplasmic reticulum in the cells of the thick ascending limb of Henle's loop (TALH). Dysfunction o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 18 16 شماره
صفحات -
تاریخ انتشار 2009