Tuning protein-protein interactions using cosolvents: specific effects of ionic and non-ionic additives on protein phase behavior.

نویسندگان

  • Jan Hansen
  • Florian Platten
  • Dana Wagner
  • Stefan U Egelhaaf
چکیده

Cosolvents are routinely used to modulate the (thermal) stability of proteins and, hence, their interactions with proteins have been studied intensely. However, less is known about their specific effects on protein-protein interactions, which we characterize in terms of the protein phase behavior. We analyze the phase behavior of lysozyme solutions in the presence of sodium chloride (NaCl), guanidine hydrochloride (GuHCl), glycerol, and dimethyl sulfoxide (DMSO). We experimentally determined the crystallization boundary (XB) and, in combination with data on the cloud-point temperatures (CPTs), the crystallization gap. In agreement with other studies, our data indicate that the additives might affect the protein phase behavior through electrostatic screening and additive-specific contributions. At high salt concentrations, where electrostatic interactions are screened, both the CPT and the XB are found to be linear functions of the additive concentration. Their slopes quantify the additive-specific changes of the phase behavior and thus of the protein-protein interactions. While the specific effect of NaCl is to induce attractions between proteins, DMSO, glycerol and GuHCl (with increasing strength) weaken attractions and/or induce repulsions. Except for DMSO, changes of the CPT are stronger than those of the XB. Furthermore, the crystallization gap widens in the case of GuHCl and glycerol and narrows in the case of NaCl. We relate these changes to colloidal interaction models, namely square-well and patchy interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of additives on protein aggregation.

This paper overviews solution additives that affect protein stability and aggregation during refolding, heating, and freezing processes. Solution additives are mainly grouped into two classes, i.e., protein denaturants and stabilizers. The former includes guanidine, urea, strong ionic detergents, and certain chaotropic salts; the latter includes certain amino acids, sugars, polyhydric alcohols,...

متن کامل

Effect of osmolytes and Hofmeister salts on protein adsorption

In a biological cell, proteins perform their functions in a highly complex environment comprising crowding and confinement effects as well as interactions with interfaces, cosolvents, and other biomolecules. Cosolvents can stabilize or destabilize the native folded structure of proteins in solution. Here, we present recent studies on how ionic and non-ionic cosolvents affect the interfacial aff...

متن کامل

Competing salt effects on phase behavior of protein solutions: tailoring of protein interaction by the binding of multivalent ions and charge screening.

The phase behavior of protein solutions is affected by additives such as crowder molecules or salts. In particular, upon addition of multivalent counterions, a reentrant condensation can occur; i.e., protein solutions are stable for low and high multivalent ion concentrations but aggregating at intermediate salt concentrations. The addition of monovalent ions shifts the phase boundaries to high...

متن کامل

A Recyclable Poly(ionic liquid)s Enzyme Reactor for Highly Efficient Protein Digestion

One of the most significant tasks for proteomic research and industrial applications, is the preparation of recyclable enzyme reactor. Herein, a novel recyclable enzyme reactor has been developed based on monodispersed spherical poly(quaternary ammonium ionic liquid)s particles immobilized trypsin. A new quaternary ammonium ionic liquids functional monomer was first synthesized. The ionic l...

متن کامل

Molecular Interaction of Benzalkonium Ibuprofenate and its Discrete Ingredients with Human Serum Albumin

Studying the interaction of pharmaceutical ionic liquids with human serum albumin (HSA) can help investigating whether or not ionic liquid formation can enhance pharmacological profile of the discrete ingredients. In this respect, in the present work, the interactions of Benzalkonium Ibuprofenate, as a well-known active pharmaceutical ionic liquid, Benzalkonium Chloride, and also Sodium Ibuprof...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 15  شماره 

صفحات  -

تاریخ انتشار 2016