Non-linear oscillatory rheological properties of a generic continuum foam model: comparison with experiments and shear-banding predictions.
نویسندگان
چکیده
The occurrence of shear bands in a complex fluid is generally understood as resulting from a structural evolution of the material under shear, which leads (from a theoretical perspective) to a non-monotonic stationary flow curve related to the coexistence of different states of the material under shear. In this paper we present a scenario for shear-banding in a particular class of complex fluids, namely foams and concentrated emulsions, which differs from other scenarios in two important ways. First, the appearance of shear bands is shown to be possible both without any intrinsic physical evolution of the material (e.g. via a parameter coupled to the flow such as concentration or entanglements) and without any finite critical shear rate below which the flow does not remain stationary and homogeneous. Secondly, the appearance of shear bands depends on the initial conditions, i.e. the preparation of the material. In other words, it is history dependent. This behaviour relies on the tensorial character of the underlying model (2D or 3D) and is triggered by an initially inhomogeneous strain distribution in the material. The shear rate displays a discontinuity at the band boundary whose amplitude is history dependent and thus depends on the sample preparation.
منابع مشابه
Development of a rheological model for polymeric fluids based on FENE model
Rheological models for polymer solutions and melts based on the finitely extensible non-linear elastic (FENE) dumbbell theory are reviewed in this study. The FENE-P model that is a well-known Peterlin approximation of the FENE model, indicates noticeable deviation from original FENE predictions and also experimental results, especially in the transient flow. In addition, both FENE and FENE-P mo...
متن کاملFrom “discrete” to “continuum” flow in foams
– From both NMR and conventional rheometrical data we show that a foam cannot flow steadily below a critical, apparent shear rate and a critical shear stress. At low velocities the shear localizes in a layer of thickness decreasing with the apparent shear rate. When this thickness becomes smaller than a critical value hc (about 25 bubble diameters) the continuum assumption is no longer valid an...
متن کاملProbing shear-banding transitions of the VCM model for entangled wormlike micellar solutions using large amplitude oscillatory shear (LAOS) deformations
We explore the use of Large Amplitude Oscillatory Shear (LAOS) deformation to probe the dynamics of shear-banding in soft entangled materials, primarily wormlike micellar solutions which are prone to breakage and disentanglement under strong deformations. The state of stress in these complex fluids is described by a class of viscoelastic constitutive models which capture the key linear and nonl...
متن کاملProbing Shear-Banding Transitions of the VCM Model for Entangled Wormlike Micellar Solutions Using Large Amplitude Oscillatory Shearing (LAOS) Deformations
We explore the use of Large Amplitude Oscillatory Shear (LAOS) deformation to probe the dynamics of shear-banding in soft entangled materials, primarily wormlike micellar solutions which are prone to breakage and disentanglement under strong deformations. The state of stress in these complex fluids is described by a class of viscoelastic constitutive models which capture the key linear and nonl...
متن کاملDynamic Shear Rheology of Thixotropic Suspensions: Comparison of Structure-Based Models with Large Amplitude Oscillatory Shear Experiments
Rheological measurements on a model thixotropic suspension developed by Dullaert and Mewis are performed, including large amplitude oscillatory shear (LAOS) flow, shear flow reversal, and a novel unidirectional LAOS flow, to provide an extended rheological data set for testing constitutive models. A new structure-based model is developed by improving the elastic stress component in the Delaware...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European physical journal. E, Soft matter
دوره 35 6 شماره
صفحات -
تاریخ انتشار 2012