ERRα negatively regulates type I interferon induction by inhibiting TBK1-IRF3 interaction

نویسندگان

  • Xiang He
  • Shengli Ma
  • Yinyin Tian
  • Congwen Wei
  • Yongjie Zhu
  • Feng Li
  • Pingping Zhang
  • Penghao Wang
  • Yanhong Zhang
  • Hui Zhong
چکیده

Estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily controlling energy homeostasis; however, its precise role in regulating antiviral innate immunity remains to be clarified. Here, we showed that ERRα deficiency conferred resistance to viral infection both in vivo and in vitro. Mechanistically, ERRα inhibited the production of type-I interferon (IFN-I) and the expression of multiple interferon-stimulated genes (ISGs). Furthermore, we found that viral infection induced TBK1-dependent ERRα stabilization, which in turn associated with TBK1 and IRF3 to impede the formation of TBK1-IRF3, IRF3 phosphorylation, IRF3 dimerization, and the DNA binding affinity of IRF3. The effect of ERRα on IFN-I production was independent of its transcriptional activity and PCG-1α. Notably, ERRα chemical inhibitor XCT790 has broad antiviral potency. This work not only identifies ERRα as a critical negative regulator of antiviral signaling, but also provides a potential target for future antiviral therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TANK-Binding Kinase 1 (TBK1) Isoforms Negatively Regulate Type I Interferon Induction by Inhibiting TBK1-IRF3 Interaction and IRF3 Phosphorylation

TANK-binding kinase 1 (TBK1) is an important serine/threonine-protein kinase that mediates phosphorylation and nuclear translocation of IRF3, which contributes to induction of type I interferons (IFNs) in the innate antiviral response. In mammals, TBK1 spliced isoform negatively regulates the virus-triggered IFN-β signaling pathway by disrupting the interaction between retinoic acid-inducible g...

متن کامل

DYRK2 Negatively Regulates Type I Interferon Induction by Promoting TBK1 Degradation via Ser527 Phosphorylation

Viral infection activates the transcription factors NF-κB and IRF3, which contribute to the induction of type I interferons (IFNs) and cellular antiviral responses. Protein kinases play a critical role in various signaling pathways by phosphorylating their substrates. Here, we identified dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 2 (DYRK2) as a negative regulator of virus-tr...

متن کامل

RIOK3 is an adaptor protein required for IRF3-mediated antiviral type I interferon production.

Detection of cytosolic nucleic acids by pattern recognition receptors leads to the induction of type I interferons (IFNs) and elicits the innate immune response. We report here the identification of RIOK3 as a novel adaptor protein that is essential for the cytosolic nucleic acid-induced type I IFN production and for the antiviral response to gammaherpesvirus through two independent kinome-wide...

متن کامل

TRAF-interacting protein (TRIP) negatively regulates IFN-β production and antiviral response by promoting proteasomal degradation of TANK-binding kinase 1

TANK-binding kinase 1 (TBK1) plays an essential role in Toll-like receptor (TLR)- and retinoic acid-inducible gene I (RIG-I)-mediated induction of type I interferon (IFN; IFN-α/β) and host antiviral responses. How TBK1 activity is negatively regulated remains largely unknown. We report that TNF receptor-associated factor (TRAF)-interacting protein (TRIP) promotes proteasomal degradation of TBK1...

متن کامل

Control of TANK-binding Kinase 1-mediated Signaling by the 134.5 Protein of Herpes Simplex Virus

TANK-binding kinase 1 (TBK1) is a key component of Tolllike receptor-dependent and -independent signaling pathways. In response to microbial components, TBK1 activates interferon regulatory factor 3 (IRF3) and cytokine expression. Here we show that TBK1 is a novel target of the 134.5 protein, a virulence factor whose expression is regulated in a temporal fashion. Remarkably, the 134.5 protein i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017