Models for antigen receptor gene rearrangement. III. Heavy and light chain allelic exclusion.
نویسندگان
چکیده
The extent of allelic exclusion in Ig genes is very high, although not absolute. Thus far, it has not been clearly established whether rapid selection of the developing B cell as soon as it has achieved the first productively rearranged, functional heavy chain is the only mechanism responsible for allelic exclusion. Our computational models of Ag receptor gene rearrangement in B lymphocytes are hereby extended to calculate the expected fractions of heavy chain allelically included newly generated B cells as a function of the probability of heavy chain pairing with the surrogate light chain, and the probability that the cell would test this pairing immediately after the first rearrangement. The expected fractions for most values of these probabilities significantly exceed the levels of allelic inclusion in peripheral B cells, implying that in most cases productive rearrangement and subsequent cell surface expression of one allele of the heavy chain gene probably leads to prevention of rearrangement completion on the other allele, and that additional mechanisms, such as peripheral selection disfavoring cells with two productively rearranged heavy chain genes, may also play a role. Furthermore, we revisit light chain allelic exclusion by utilizing the first (to our knowledge) computational model which addresses and enumerates B cells maturing with two productively rearranged kappa light chain genes. We show that, assuming that there are no selection mechanisms responsible for abolishing cells expressing two light chains, the repertoire of newly generated B lymphocytes exiting the bone marrow must contain a significant fraction of such kappa double-productive B cells.
منابع مشابه
Models for antigen receptor gene rearrangement. I. Biased receptor editing in B cells: implications for allelic exclusion.
Recent evidence suggests that lymphocyte Ag receptor gene rearrangement does not always stop after the expression of the first productively rearranged receptor. Light chain gene rearrangement in B cells, and alpha-chain rearrangement in T cells can continue, which raises the question: how is allelic exclusion maintained, if at all, in the face of continued rearrangement? In this and the accompa...
متن کاملModels for antigen receptor gene rearrangement. II. Multiple rearrangement in the TCR: allelic exclusion or inclusion?
This series of papers addresses the effects of continuous Ag receptor gene rearrangement in lymphocytes on allelic exclusion. The previous paper discussed light chain gene rearrangement and receptor editing in B cells, and showed that these processes are ordered on three different levels. This order, combined with the constraints imposed by a strong negative selection, was shown to lead to effe...
متن کاملB cell receptor editing in tolerance and autoimmunity.
Receptor editing is the process of ongoing antibody gene rearrangement in a lymphocyte that already has a functional antigen receptor. The expression of a functional antigen receptor will normally terminate further rearrangement (allelic exclusion). However, lymphocytes with autoreactive receptors have a chance at escaping negative regulation by "editing" the specificities of their receptors wi...
متن کاملIN INDIVIDUAL T CELLS ONE PRODUCTIVE a REARRANGEMENT DOES NOT APPEAR TO BLOCK REARRANGEMENT AT THE SECOND ALLELE
An individual B cell expresses only one functional light and one functional heavy chain on the cell surface. This process, termed allelic exclusion, arises as a consequence of the fact that the rearrangement of gene segments to assemble complete variable genes requires that only one functional VwDH:JH and one functional VL]L rearrangement occur in each B cell (1, 2). Presumably a VwDH:JH rearra...
متن کاملChanges in Locus-specific V(D)J Recombinase Activity Induced by Immunoglobulin Gene Products during B Cell Development
The process of V(D)J recombination is crucial for regulating the development of B cells and for determining their eventual antigen specificity. Here we assess the developmental regulation of the V(D)J recombinase directly, by monitoring the double-stranded DNA breaks produced in the process of V(D)J recombination. This analysis provides a measure of recombinase activity at immunoglobulin heavy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 170 1 شماره
صفحات -
تاریخ انتشار 2003