Level Spacing Distributions and the Bessel Kernel
نویسندگان
چکیده
Scaling models of random N x N hermitian matrices and passing to the limit N -» oo leads to integral operators whose Fredholm determinants describe the statistics of the spacing of the eigenvalues of hermitian matrices of large order. For the Gaussian Unitary Ensemble, and for many others' as well, the kernel one obtains by scaling in the "bulk" of the spectrum is the "sine kernel" — — . Rescaling the GUE at the "edge" of the spectrum leads to the kernel π(x y) M(x)M'(y) A . . f A . f . , where Ai is the Airy function. In previous work we x-y found several analogies between properties of this "Airy kernel" and known properties of the sine kernel: a system of partial differential equations associated with the logarithmic differential of the Fredholm determinant when the underlying domain is a union of intervals; a representation of the Fredholm determinant in terms of a Painleve transcendent in the case of a single interval; and, also in this case, asymptotic expansions for these determinants and related quantities, achieved with the help of a differential operator which commutes with the integral operator. In this paper we show that there are completely analogous properties for a class of kernels which arise when one rescales the Laguerre or Jacobi ensembles at the edge of the spectrum, namely
منابع مشابه
A Positive Radial Product Formula for the Dunkl Kernel
It is an open conjecture that generalized Bessel functions associated with root systems have a positive product formula for non-negative multiplicity parameters of the associated Dunkl operators. In this paper, a partial result towards this conjecture is proven, namely a positive radial product formula for the non-symmetric counterpart of the generalized Bessel function, the Dunkl kernel. Radia...
متن کاملLevel-Spacing Distributions and the Airy Kernel
Scaling level-spacing distribution functions in the “bulk of the spectrum” in random matrix models of N × N hermitian matrices and then going to the limit N → ∞, leads to the Fredholm determinant of the sine kernel sinπ(x− y)/π(x− y). Similarly a scaling limit at the “edge of the spectrum” leads to the Airy kernel [Ai(x)Ai′(y)−Ai′(x)Ai(y)] /(x − y). In this paper we derive analogues for this Ai...
متن کاملOn the Diamond Bessel Heat Kernel
We study the heat equation in n dimensional by Diamond Bessel operator. We find the solution by method of convolution and Fourier transform in distribution theory and also obtain an interesting kernel related to the spectrum and the kernel which is called Bessel heat kernel.
متن کاملLarge gap asymptotics at the hard edge for product random matrices and Muttalib-Borodin ensembles
We study the distribution of the smallest eigenvalue for certain classes of positive-definite Hermitian random matrices, in the limit where the size of the matrices becomes large. Their limit distributions can be expressed as Fredholm determinants of integral operators associated to kernels built out of Meijer G-functions or Wright’s generalized Bessel functions. They generalize in a natural wa...
متن کاملHitting half-spaces by Bessel-Brownian di usions
The purpose of the paper is to nd explicit formulas describing the joint distributions of the rst hitting time and place for half-spaces of codimension one for a di usion in R, composed of onedimensional Bessel process and independent n-dimensional Brownian motion. The most important argument is carried out for the two-dimensional situation. We show that this amounts to computation of distribut...
متن کامل