Spherical Functions and Spherical Laplace Transform on Ordered Symmetric Space
نویسنده
چکیده
Let G=H be a semisimple globally hyperbolic symmetric space and let ' be a H-spherical function on G=H. We derive an expansion formula for ' similar to the Harish-Chandra formula for spherical functions on a Riemannian symmetric space. We use this result to analytically continuate the spherical functions in the parameters. A functional equation for ' is derived and then used to invert the spherical Laplace transform.
منابع مشابه
An application of Shift Operators to ordered symmetricspacesNils
We study the action of elementary shift operators on spherical functions on ordered symmetric spaces M m;n of Cayley type, where m 2 N denotes the multiplicity of the short roots and n 2 N the rank of the symmetric space. For m even we apply this to prove a Paley-Wiener theorem for the spherical Laplace transform deened on M m;n by a reduction to the rank 1 case. Finally we generalize our notio...
متن کاملA Paley-wiener Theorem for the Spherical Laplace Transform on Causal Symmetric Spaces of Rank 1 Nils Byrial Andersen and Gestur Olafsson
We formulate and prove a topological Paley-Wiener theorem for the normalized spherical Laplace transform deened on the rank 1 causal sym
متن کاملPaley-wiener Theorem for Line Bundles over Compact Symmetric Spaces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2: Riemannian Symmetric Spaces and Related Structure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملSpherical Transform and Jacobi Polynomials on Root Systems of Type Bc
Let R be a root system of type BC in a = Rr of general positive multiplicity. We introduce certain canonical weight function on Rr which in the case of symmetric domains corresponds to the integral kernel of the Berezin transform. We compute its spherical transform and prove certain Bernstein-Sato type formula. This generalizes earlier work of Unterberger-Upmeier, van Dijk-Pevsner, Neretin and ...
متن کاملGeneralization of Titchmarsh's Theorem for the Dunkl Transform
Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.
متن کامل