Toward Low-Temperature Dehydrogenation Catalysis: Isophorone Adsorbed on Pd(111).
نویسندگان
چکیده
Adsorbate geometry and reaction dynamics play essential roles in catalytic processes at surfaces. Here we present a theoretical and experimental study for a model functional organic/metal interface: isophorone (C9H14O) adsorbed on the Pd(111) surface. Density functional theory calculations with the Perdew-Burke-Ernzerhoff (PBE) functional including van der Waals (vdW) interactions, in combination with infrared spectroscopy and temperature-programmed desorption (TPD) experiments, reveal the reaction pathway between the weakly chemisorbed reactant (C9H14O) and the strongly chemisorbed product (C9H10O), which occurs by the cleavage of four C-H bonds below 250 K. Analysis of the TPD spectrum is consistent with the relatively small magnitude of the activation barrier derived from PBE+vdW calculations, demonstrating the feasibility of low-temperature dehydrogenation.
منابع مشابه
Interaction of Isophorone with Pd(111): A Combination of IRAS, NEXAFS and DFT Studies
Atomistic level understanding of interaction of α,β-unsaturated carbonyls with late transition metals is a key prerequisite for rational design of new catalytic materials with the desired selectivity toward C=C or C=O bond hydrogenation. The interaction of this class of compounds with transition metals was investigated on α,β-unsaturated ketone isophorone on Pd(111) as a prototypical system. In...
متن کاملInteraction of Isophorone with Pd(111): A Combination of Infrared Reflection–Absorption Spectroscopy, Near-Edge X-ray Absorption Fine Structure, and Density Functional Theory Studies
Atomistic level understanding of interaction of α,β-unsaturated carbonyls with late transition metals is a key prerequisite for rational design of new catalytic materials with the desired selectivity toward C=C or C=O bond hydrogenation. The interaction of this class of compounds with transition metals was investigated on α,β-unsaturated ketone isophorone on Pd(111) as a prototypical system. In...
متن کاملCatalysis beyond frontier molecular orbitals: Selectivity in partial hydrogenation of multi-unsaturated hydrocarbons on metal catalysts
The mechanistic understanding and control over transformations of multi-unsaturated hydrocarbons on transition metal surfaces remains one of the major challenges of hydrogenation catalysis. To reveal the microscopic origins of hydrogenation chemoselectivity, we performed a comprehensive theoretical investigation on the reactivity of two α,β-unsaturated carbonyls-isophorone and acrolein-on seven...
متن کاملRole of low-coordinated surface sites in olefin hydrogenation: a molecular beam study on Pd nanoparticles and Pd(111).
Hydrogenation of unsaturated hydrocarbon compounds catalyzed by transition metals is traditionally believed to be a structure-insensitive reaction. However, recent progress in understanding the microscopic details of this process challenges the universality of this common belief. Recently, several examples of catalytic systems were described in the literature where hydrogenation of the olefinic...
متن کاملAniline hydrogenolysis on nickel: effects of surface hydrogen and surface structure
Fluorescence yield near-edge spectroscopy (FYNES) above the carbon K edge and temperature programmed reaction spectroscopy (TPRS) have been used as the methods for characterizing the reactivity and structure of adsorbed aniline and aniline derived species on the Ni(100) and Ni(111) surfaces over an extended range of temperatures and hydrogen pressures. The Ni(100) surface shows appreciably high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry letters
دوره 3 5 شماره
صفحات -
تاریخ انتشار 2012