Heterozygous SOD2 Deletion Impairs Glucose-Stimulated Insulin Secretion, but Not Insulin Action, in High-Fat–Fed Mice
نویسندگان
چکیده
Elevated reactive oxygen species (ROS) are linked to insulin resistance and islet dysfunction. Manganese superoxide dismutase (SOD2) is a primary defense against mitochondrial oxidative stress. To test the hypothesis that heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion (GSIS) and insulin action, wild-type (sod2(+/+)) and heterozygous knockout mice (sod2(+/-)) were fed a chow or high-fat (HF) diet, which accelerates ROS production. Hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI) clamps were performed to assess GSIS and insulin action in vivo. GSIS during HG clamps was equal in chow-fed sod2(+/-) and sod2(+/+) but was markedly decreased in HF-fed sod2(+/-). Remarkably, this impairment was not paralleled by reduced HG glucose infusion rate (GIR). Decreased GSIS in HF-fed sod2(+/-) was associated with increased ROS, such as superoxide ion. Surprisingly, insulin action determined by HI clamps did not differ between sod2(+/-) and sod2(+/+) of either diet. Since insulin action was unaffected, we hypothesized that the unchanged HG GIR in HF-fed sod2(+/-) was due to increased glucose effectiveness. Increased GLUT-1, hexokinase II, and phospho-AMPK protein in muscle of HF-fed sod2(+/-) support this hypothesis. We conclude that heterozygous SOD2 deletion in mice, a model that mimics SOD2 changes observed in diabetic humans, impairs GSIS in HF-fed mice without affecting insulin action.
منابع مشابه
Munc18c heterozygous knockout mice display increased susceptibility for severe glucose intolerance.
The disruption of Munc18c binding to syntaxin 4 impairs insulin-stimulated GLUT4 vesicle translocation in 3T3L1 adipocytes. To investigate the physiological function and requirement for Munc18c in the regulation of GLUT4 translocation and glucose homeostasis in vivo, we used homologous recombination to generate Munc18c-knockout (KO) mice. Homozygotic disruption of the Munc18c gene resulted in e...
متن کاملEnhanced Mitochondrial Superoxide Scavenging Does Not Improve Muscle Insulin Action in the High Fat-Fed Mouse
Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2(tg) mice) and/or transgenically expressing catalase within the mitochondrial matrix (mcat(tg) mice) have increased scavenging of O2(˙-) and H2O2, respectively. Furthermore, muscle insulin acti...
متن کاملAENDO July 40/1
Ahrén, Bo, Per Sauerberg, and Christian Thomsen. Increased insulin secretion and normalization of glucose tolerance by cholinergic agonism in high fat-fed mice. Am. J. Physiol. 277 (Endocrinol. Metab. 40): E93–E102, 1999.— Increased insulinotropic activity by the cholinergic agonist carbachol exists in insulin-resistant high fat-fed C57BL/6J mice. We examined the efficiency and potency of carba...
متن کاملIncreased insulin secretion and normalization of glucose tolerance by cholinergic agonism in high fat-fed mice.
Increased insulinotropic activity by the cholinergic agonist carbachol exists in insulin-resistant high fat-fed C57BL/6J mice. We examined the efficiency and potency of carbachol to potentiate glucose-stimulated insulin secretion and to improve glucose tolerance in these animals. Intravenous administration of carbachol (at 15 and 50 nmol/kg) markedly potentiated glucose (1 g/kg)-stimulated insu...
متن کاملHexokinase II overexpression improves exercise-stimulated but not insulin-stimulated muscle glucose uptake in high-fat-fed C57BL/6J mice.
The aim of the present study was to determine the specific sites of impairment to muscle glucose uptake (MGU) in the insulin-resistant high-fat-fed, conscious C57BL/6J mouse. Wild type (WT) and hexokinase II overexpressing (HK(Tg)) mice were fed either a standard diet or high-fat diet and studied at 4 months of age. A carotid artery and jugular veins had catheters chronically implanted for samp...
متن کامل