Clustering of lung adenocarcinomas classes using automated texture analysis on CT images
نویسندگان
چکیده
Purpose: To assess whether automated texture analysis of CT images enables discrimination among pathologic classes of lung adenocarcinomas, and thus serves as an in vivo biomarker of lung cancer prognosis. Materials and Methods: Chest CTs of 30 nodules in 30 patients with resected adenocarcinomas were evaluated by a pulmonary pathologist who classified each resected cancer according to the International Association for the Study of Lung Cancer (IASLC) system. The categories included adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), lepidic-predominant adenocarcinoma (LPA), and other invasive adenocarcinomas (INV). 3D volumes of interest (VOIs) and 2D regions of interest (ROIs) were then constructed for each nodule. A comprehensive set of N=279 texture parameters were computed for both 3D and 2D regions. Clustering and classification of these parameters were performed with linear discriminant analysis (LDA) using features determined by optimal subsets. Results: Of the 30 adenocarcinomas, there were 13 INV, 11 LPA, 3 MIA, and 3 AIS. AIS and MIA groups were analyzed together. With all 3 classes, LDA classified 17 of 30 nodules correctly using the nearest neighbor (k=1) method. When only the two largest classes (INV and LPA) were used, 21 of 24 nodules were classified correctly. With 3 classes and 2D texture analysis, and when using only the two largest groups, LDA was able to correctly classify all nodules. Conclusion: CT texture parameters determined by optimal subsets allows for effective clustering of adenocarcinoma classes. These results suggest the potential use of automated (or computer-assisted) CT image analysis to predict the invasive pathologic character of lung nodules. Our approach overcomes the limitations of current radiologic interpretation, such as subjectivity, interand intra-observer variability, and the effect of reader experience.
منابع مشابه
Automated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy
Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...
متن کاملDetection of lung cancer using CT images based on novel PSO clustering
Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...
متن کاملAdvanced Segmentation Techniques Using Genetic Algorithm for Recognition of Lung Diseases from CT Scans of Thorax
In this study, texture based segmentation and recognition of the lung diseases from the computed tomography images are presented. The texture based features are extracted by Gabor filtering, feature selection techniques such as Information Gain, Principal Component Analysis, correlation based feature selection are employed with Genetic algorithm which is used as an optimal initialisation of the...
متن کاملReproducibility and Prognosis of Quantitative Features Extracted from CT Images.
We study the reproducibility of quantitative imaging features that are used to describe tumor shape, size, and texture from computed tomography (CT) scans of non-small cell lung cancer (NSCLC). CT images are dependent on various scanning factors. We focus on characterizing image features that are reproducible in the presence of variations due to patient factors and segmentation methods. Thirty-...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کامل