A Brain Emotional Learning-based Prediction Model A Brain Emotional Learning-based Prediction Model For the Prediction of Geomagnetic Storms
نویسندگان
چکیده
This paper introduces a new type of brain emotional learning inspired models (BELIMs). The suggested model is utilized as a suitable model for predicting geomagnetic storms. The model is known as BELPM which is an acronym for Brain Emotional Learning-based Prediction Model. The structure of the suggested model consists of four main parts and mimics the corresponding regions of the neural structure underlying fear conditioning. The functions of these parts are implemented by assigning adaptive networks to the different parts. The learning algorithm of BELPM is based on the steepest descent (SD) and the least square estimator (LSE). In this paper, BELPM is employed to predict geomagnetic storms using the Disturbance Storm Time (Dst) index. To evaluate the performance of BELPM, the obtained results have been compared with the results of the adaptive neuro-fuzzy inference system (ANFIS).
منابع مشابه
Predicting Geomagnetic Activity Index by Brain Emotional Learning
The Emotional Learning Algorithm has been introduced to show the effect of emotions as well known stimuli in the quick and almost satisficing decision making in human. The remarkable properties of emotional learning, low computational complexity and fast training, and its simplicity in multi objective problems has made it a powerful methodology in real time control and decision systems, where t...
متن کاملA New Computational Intelligence Model for Long-Term Prediction of Solar and Geomagnetic Activity
This paper briefly describes how the neural structure of fear conditioning has inspired to develop a computational intelligence model that is referred to as the brain emotional learning-inspired model (BELIM). The model is applied to predict long step ahead of solar activity and geomagnetic storms.
متن کاملUsing BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT
In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...
متن کاملChaotic time series prediction using brain emotional learning-based recurrent fuzzy system (BELRFS)
In this paper, an architecture based on the anatomical structure of the emotional network in the brain of mammalians is applied as a prediction model for chaotic time series studies. The architecture is called Brain Emotional Learning-based Recurrent Fuzzy System (BELRFS), which stands for: Brain Emotional Learning-based Recurrent Fuzzy System. It adopts neuro-fuzzy adaptive networks to mimic t...
متن کاملBrain Emotional Learning-Based Prediction Model (For Long-Term Chaotic Prediction Applications)
— This study suggests a new prediction model for chaotic time series inspired by the brain emotional learning of mammals. We describe the structure and function of this model, which is referred to as BELPM (Brain Emotional Learning-Based Prediction Model). Structurally, the model mimics the connection between the regions of the limbic system, and functionally it uses weighted k nearest neighbor...
متن کامل