Novel dual-bed reactors: utilization of hydrogen spillover in reactor design.
نویسندگان
چکیده
Hydrogen spillover over macroscopic distances was demonstrated and exploited in the design of two novel catalytic reactors for 1-butene isomerization. A dual-bed reactor containing separate zones of noble metal and bimetallic catalysts yielded activities up to 2.7 times greater than that of the noble metal alone. The noble metal catalyst contained palladium supported on graphitic carbon. The bimetallic catalyst contained a base metal, either iron or cobalt, and a lanthanide metal, either cerium or praseodymium, also supported on graphitic carbon. The bimetallic catalysts by themselves had no measurable activity at the current experimental conditions. Results from a dual-bed, dual-feed reactor using the same catalysts showed dramatic activity increases relative to controls. In this reactor, the hydrocarbon never contacted the noble metal catalyst, yet substantial hydrocarbon conversion was measured. No hydrocarbon conversion was detected when blank support replaced the bimetallic catalyst or when no material at all was placed above the noble metal catalyst. In both reactors, the activity increase was attributed to hydrogen spillover. That is, molecular hydrogen adsorbed and dissociated on the noble metal catalyst. The adsorbed atomic hydrogen was then transported via surface diffusion to the bimetallic catalyst, activating those sites. The results also demonstrated that a catalytic reaction may occur at distinctly different reactive sites and that catalysts may be selected to promote specific steps within the reaction.
منابع مشابه
Enhancement of Hydrogen and Methanol Production using a Double Fluidized-bed Two Membranes Reactor
Nowadays, hydrogen and methanol are attractive prospects because of lower emission compared to the other energy sources and their special application in fuel cell technology, which are now widely regarded as key energy solution for the 21st century. These two chemicals also can be utilized in transportation, distributed heat and power generation and energy storage systems. In this study, a nove...
متن کاملRaising Distillate Selectivity and Catalyst Life Time in Fischer-Tropsch Synthesis by Using a Novel Dual-Bed Reactor
In a novel dual bed reactor Fischer-Tropsch synthesis was studied by using two diffrent cobalt catalysts. An alkali-promoted cobalt catalyst was used in the first bed of a fixed-bed reactor followed by a Rutenuim promoted cobalt catalyst in the second bed. The activity, product selectivity and accelerated deactivation of the system were assessed and compared with a conventional single bed r...
متن کاملA Novel Study of Upgrading Catalytic Reforming Unit by Improving Catalyst Regeneration Process to Enhance Aromatic Compounds, Hydrogen Production, and Hydrogen Purity
Catalytic reforming is a chemical process utilized in petroleum refineries to convert naphtha, typically having low octane ratings, into high octane liquid products, called reformates, which are components of high octane gasoline. In this study, a mathematical model was developed for simulation of semi-regenerative catalytic reforming unit and the result of the proposed model was compared with ...
متن کاملParticle Size Optimization for Syngas Chemical Looping Process
The syngas chemical looping (SCL) process developed at the Ohio State University can efficiently convert coal derived syngas into hydrogen with in-situ CO2 capture. In this novel process, two moving bed units are used to convert syngas into hydrogen through the assistance of an oxygen carrier particle. A third unit, an entrained bed combustor, is used to convey the oxygen carrier particles to c...
متن کاملHydrogen production by steam reforming of dimethyle ether over Cu/ZnO/Al2O3 and H-ZSM-5 catalysts: An experimental and modeling study
Hydrogen was produced by steam reforming of dimethyl ether (DME) using a physical mixture of commercial HZSM-5 zeolite (for DME hydrolyzing) and Cu/ZnO/Al2O3 (for methanol steam reforming) as a catalyst in a fixed bed reactor. The experiments were performed at atmospheric pressure and in a temperature range from 270 to 310 °C. The effects of feed temperature and gas hourly space velocity (GHSV)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 20 4 شماره
صفحات -
تاریخ انتشار 2004