Estrogens Suppress Spinal Endomorphin 2 Release in Female Rats in Phase with the Estrous Cycle.

نویسندگان

  • Arjun Kumar
  • Emiliya M Storman
  • Nai-Jiang Liu
  • Alan R Gintzler
چکیده

BACKGROUND/AIMS Male and female rats differ in their ability to utilize spinal endomorphin 2 (EM2; the predominant mu-opioid receptor ligand in spinal cord) and in the mechanisms that underlie spinal EM2 analgesic responsiveness. We investigated the relevance of spinal estrogen receptors (ERs) to the in vivo regulation of spinal EM2 release. METHODS ER antagonists were administered directly to the lumbosacral spinal cord of male and female rats, intrathecal perfusate was collected, and resulting changes in EM2 release were quantified using a plate-based radioimmunoassay. RESULTS Intrathecal application of an antagonist of either estrogen receptor-α (ERα) or the ER GPR30 failed to alter spinal EM2 release. Strikingly, however, the concomitant blockade of ERα and GPR30 enhanced spinal EM2 release. This effect was sexually dimorphic, being absent in males. Furthermore, the magnitude of the enhancement of spinal EM2 release in females was dependent upon estrous cycle stage, suggesting a relationship with circulating levels of 17β-estradiol. The rapid onset of enhanced EM2 release following intrathecal application of ERα/GPR30 antagonists (within 30-40 min) suggests mediation via ERs in the plasma membrane, not the nucleus. Notably, both ovarian and spinally synthesized estrogens are essential for membrane ER regulation of spinal EM2 release. CONCLUSION These findings underscore the importance of estrogens for the regulation of spinal EM2 activity and, by extension, endogenous spinal EM2 antinociception in females. Components of the spinal estrogenic mechanism(s) that suppress EM2 release could represent novel drug targets for improving utilization of endogenous spinal EM2, and thereby pain management in women.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sex-/ovarian steroid-dependent release of endomorphin 2 from spinal cord.

Mu-opioid receptor (MOR) agonists have been shown to be more potent analgesics in male than female rodents. Regulation of spinal MOR-coupled antinociception by 17beta-estradiol (estrogen, E2) and progesterone (P) is also sexually dimorphic; pregnancy levels of E2/P activate MOR-coupled analgesic pathways in male but not female rats. We hypothesized that the sexual dimorphic characteristics of M...

متن کامل

Expression of RFamide-related peptide in the dorsomedial nucleus of hypothalamus during the estrous cycle of rats

Introduction: RFamide-related peptide (RFRP) is believed to act as an inhibitor of gonadotropin releasing hormone (GnRH) secretion. The aim of the present study was to compare the expression pattern of RFRP neurons in the dorsomedial nucleus of hypothalamus (DMH) at different phases of the rat estrous cycle. Methods: The phases of the estrous cycle were determined in 16 adult female Sprague-...

متن کامل

Estrous Cycle Dependent Fluctuations of Regulatory Neuropeptides in the Lower Urinary Tract of Female Rats upon Colon-Bladder Cross-Sensitization

Co-morbidity of bladder, bowel, and non-specific pelvic pain symptoms is highly prevalent in women. Little evidence is present on modulation of pelvic pain syndromes by sex hormones, therefore, the objective of this study was to clarify the effects of hormonal fluctuations within the estrous cycle on regulatory neuropeptides in female rats using a model of neurogenic bladder dysfunction. The es...

متن کامل

Hypothalamic Expression of Melanocortin-4 Receptor and Agouti-related Peptide mRNAs During the Estrous Cycle of Rats

Melanocortin- 4 receptor (MC4R) and agouti- related peptide (AgRP) are involved in energy homeostasis in rats. According to MC4R and AgRP effects on luteinizing hormone (LH) secretion, they may influence the estrous cycle of rats. Therefore, the aim of this study was to investigate the expression of MC4R and AgRP mRNAs at different stages of estrous cycle in the rat’s hypothalamus. The estrous ...

متن کامل

P-99: Evaluation of Pluripotency Markers of Mouse Endometrial Tissue in Different Stages of Estrous Cycle

Background: It is assumed that adult stem/progenitor cells are responsible for cycling remodeling of the uterus endometrium throughout the reproductive life of the female. This study aimed to identify and localize stem/progenitor cells in the mice uterus using immunohistochemistry. Materials and Methods: 6-8 weeks old virgin female NMRI mice were submitted to the vaginal smear examination to de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroendocrinology

دوره 102 1-2  شماره 

صفحات  -

تاریخ انتشار 2015