Integrate-and-Fire models with adaptation are good enough: predicting spike times under random current injection

نویسندگان

  • Renaud Jolivet
  • Alexander Rauch
  • Hans-Rudolf Lüscher
  • Wulfram Gerstner
چکیده

Integrate-and-Fire-type models are usually criticized because of their simplicity. On the other hand, the Integrate-and-Fire model is the basis of most of the theoretical studies on spiking neuron models. Here, we develop a sequential procedure to quantitatively evaluate an equivalent Integrate-and-Fire-type model based on intracellular recordings of cortical pyramidal neurons. We find that the resulting effective model is sufficient to predict the spike train of the real pyramidal neuron with high accuracy. In in vivo-like regimes, predicted and recorded traces are almost indistinguishable and a significant part of the spikes can be predicted at the correct timing. Slow processes like spike-frequency adaptation are shown to be a key feature in this context since they are necessary for the model to connect between different driving regimes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrate-and-Fire models with adaptation are good enough

Integrate-and-Fire-type models are usually criticized because of their simplicity. On the other hand, the Integrate-and-Fire model is the basis of most of the theoretical studies on spiking neuron models. Here, we develop a sequential procedure to quantitatively evaluate an equivalent Integrate-and-Fire-type model based on intracellular recordings of cortical pyramidal neurons. We find that the...

متن کامل

Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy.

We demonstrate that single-variable integrate-and-fire models can quantitatively capture the dynamics of a physiologically detailed model for fast-spiking cortical neurons. Through a systematic set of approximations, we reduce the conductance-based model to 2 variants of integrate-and-fire models. In the first variant (nonlinear integrate-and-fire model), parameters depend on the instantaneous ...

متن کامل

Predicting spike timing in highly synchronous auditory neurons at different sound levels.

A challenge for sensory systems is to encode natural signals that vary in amplitude by orders of magnitude. The spike trains of neurons in the auditory system must represent the fine temporal structure of sounds despite a tremendous variation in sound level in natural environments. It has been shown in vitro that the transformation from dynamic signals into precise spike trains can be accuratel...

متن کامل

Predicting neuronal activity with simple models of the threshold type: Adaptive Exponential Integrate-and-Fire model with two compartments

An adaptive Exponential Integrate-and-Fire (aEIF) model was used to predict the activity of layer-V-pyramidal neurons of rat neocortex under random current injection. A new protocol has been developed to extract the parameters of the aEIF model using an optimal filtering technique combined with a black-box numerical optimization. We found that the aEIF model is able to accurately predict both s...

متن کامل

Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival.

Reduced models of neuronal activity such as integrate-and-fire models allow a description of neuronal dynamics in simple, intuitive terms and are easy to simulate numerically. We present a method to fit an integrate-and-fire-type model of neuronal activity, namely a modified version of the spike response model, to a detailed Hodgkin-Huxley-type neuron model driven by stochastic spike arrival. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005