Compactness in Countable Fuzzy Topological Space
نویسندگان
چکیده
A generalized fuzzy topological space called countable fuzzy topological space has already been introduced by the authors. The generalization has been performed by relaxing the criterion of preservation of arbitrary supremum of fuzzy topology to countable supremum. In this paper the notion of fuzzy compactness called c-compactness has been initiated and various properties are studied. Other related concepts like Lindelöf property, countable compactness are defined and studied in the countable fuzzy topological space.
منابع مشابه
On Fuzzy $e$-open Sets, Fuzzy $e$-continuity and Fuzzy $e$-compactness in Intuitionistic Fuzzy Topological Spaces
The purpose of this paper is to introduce and study the concepts of fuzzy $e$-open set, fuzzy $e$-continuity and fuzzy $e$-compactness in intuitionistic fuzzy topological spaces. After giving the fundamental concepts of intuitionistic fuzzy sets and intuitionistic fuzzy topological spaces, we present intuitionistic fuzzy $e$-open sets and intuitionistic fuzzy $e$-continuity and other results re...
متن کاملCOUNTABLE COMPACTNESS AND THE LINDEL¨OF PROPERTY OF L-FUZZY SETS
In this paper, countable compactness and the Lindel¨of propertyare defined for L-fuzzy sets, where L is a complete de Morgan algebra. Theydon’t rely on the structure of the basis lattice L and no distributivity is requiredin L. A fuzzy compact L-set is countably compact and has the Lindel¨ofproperty. An L-set having the Lindel¨of property is countably compact if andonly if it is fuzzy compact. ...
متن کاملSEMI $theta$-COMPACTNESS IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES
The purpose of this paper is to construct the concept of semi$theta$-compactness in intuitionistic fuzzy topological spaces. We give some characterizationsof semi $theta$-compactness and locally semi -compactness. Also, wecompare these concepts with some other types of compactness in intuitionisticfuzzy topological spaces.
متن کاملOne-point extensions of locally compact paracompact spaces
A space $Y$ is called an {em extension} of a space $X$, if $Y$ contains $X$ as a dense subspace. Two extensions of $X$ are said to be {em equivalent}, if there is a homeomorphism between them which fixes $X$ point-wise. For two (equivalence classes of) extensions $Y$ and $Y'$ of $X$ let $Yleq Y'$, if there is a continuous function of $Y'$ into $Y$ which fixes $X$ point-wise. An extension $Y$ ...
متن کاملCountable S*-compactness in L-spaces
In this paper, the notions of countable S∗-compactness is introduced in L-topological spaces based on the notion of S∗-compactness. An S∗-compact L-set is countably S∗-compact. If L = [0, 1], then countable strong compactness implies countable S∗-compactness and countable S∗-compactness implies countable F-compactness, but each inverse is not true. The intersection of a countably S∗-compact L-s...
متن کامل