A characterization of Morita equivalence pairs of quantales
نویسنده
چکیده
We characterize the pairs of sup-lattices which occur as pairs of Morita equivalence bimodules between quantales in terms of the mutual relation between the sup-lattices.
منابع مشابه
Rieffel induction and strong Morita equivalence in the context of Hilbert modules
The Morita equivalence of m-regular involutive quantales in the context of the theory of Hilbert A-modules is presented. The corresponding fundamental representation theorems are shown. We also prove that two commutative m-regular involutive quantales are Morita equivalent if and only if they are isomorphic. In the paper [5] F. Borceux and E.M. Vitale made a first step in extending the theory o...
متن کاملThe Bicategory of m-regular Involutive Quantales
Recently the theory of Morita equivalence for involutive quantales and the notion of the interior tensor products of Hilbert modules over involutive quantales evolved considerably (see e.g. Paseka, 2002 and Paseka, 2001). The present paper is an attempt to put a part of this theory in a broader context of the bicategory of m-regular involutive quantales. For facts concerning quantales in genera...
متن کاملA characterization of Morita equivalence pairs
We characterize the pairs of operator spaces which occur as pairs of Morita equivalence bimodules between non-selfadjoint operator algebras in terms of the mutual relation between the spaces. We obtain a characterization of the operator spaces which are completely isometrically isomorphic to imprimitivity bimodules between some strongly Morita equivalent (in the sense of Rieffel) C*-algebras. A...
متن کاملON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY
Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...
متن کاملON THE COMPATIBILITY OF A CRISP RELATION WITH A FUZZY EQUIVALENCE RELATION
In a recent paper, De Baets et al. have characterized the fuzzytolerance and fuzzy equivalence relations that a given strict order relation iscompatible with. In this paper, we generalize this characterization by consideringan arbitrary (crisp) relation instead of a strict order relation, while payingattention to the particular cases of a reflexive or irreflexive relation. The reasoninglargely ...
متن کامل